Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой
Шрифт:
Интервал:
Закладка:
Одно такое здание, завершенное в 1710 году, до сих пор гордо возвышается не очень далеко от того места, где я живу в Лондоне: это собор Святого Павла. Я испытываю слабость к этому зданию отчасти потому, что проектировал его математик, учившийся в том же оксфордском колледже, в котором был студентом и я. До того, как Кристофер Рен стал одним из ведущих архитекторов Англии, он учил математику в Уодхэм-колледже. Студентом он освоил широкий диапазон методик, которые впоследствии позволяли ему находить шорткаты к проектированию некоторых из самых замечательных зданий в стране.
Одним из его первых великих свершений было строительство Шелдонского театра в Оксфорде: в этом здании студентам университета торжественно выдают дипломы. Это здание прекрасно тем, что в нем нет несущих колонн, на которые опиралась бы его огромная крыша. Причина этого была, видимо, не в том, что колонны мешали бы родителям видеть, как их чада получают дипломы, а в том, что раньше здание использовалось в основном для танцев. Рен сумел соорудить эту необычайно обширную крышу без видимых опор при помощи решетчатой структуры из балок, которая переносит нагрузку на края, опирающиеся на внешние стены. Но, чтобы найти работоспособный вариант конструкции, ему нужно было решить систему из 25 линейных уравнений. Хотя Рен и получил математическое образование, эта задача поставила его в тупик, и в конце концов он обратился за помощью к Джону Валлису[91], профессору кафедры геометрии, учрежденной Генри Савилем. Обращение за помощью часто бывает важным шорткатом!
Но по-настоящему математические дарования Рена проявились при строительстве купола собора Св. Павла. Купол, который видишь, подходя к собору, имеет сферическую форму. Сфере присущи красота и совершенство, особенно ясно видные на расстоянии. Кроме того, сферическая форма отсылала к идее церкви, объемлющей сферическое мироздание. Но с точки зрения строительства у сферы есть один важный недостаток. Она не может стоять сама по себе. Ее глубина недостаточна, чтобы выдерживать ее собственный вес, так что, если бы купол ни на что не опирался, он обрушился бы в самую середину собора. Поэтому на самом деле у Св. Павла не один купол, а целых три.
То, что вы видите изнутри собора, – не внутренняя поверхность внешнего купола. На самом деле это второй купол, и его форма воспроизводит новую кривую, называемую цепной линией, которую, в частности, описал при помощи математического анализа Лейбниц. Такой купол способен стоять сам по себе, без поддержки. Кривую, о которой идет речь, образует цепь, подвешенная за два конца. Шар, свободно катящийся с горы, находит точку наименьшей энергии и останавливается в ней; свободно висящая цепь точно так же принимает форму с наименьшей потенциальной энергией. Природа очень хорошо умеет находить такие низкоэнергетические состояния. Но для архитекторов – в том числе Рена – важнее всего было то обстоятельство, что в перевернутом виде эта низкоэнергетическая кривая становится профилем, способным поддерживать свой собственный вес.
Какова же форма этой кривой? Лейбниц проводил эксперименты, пробуя разные формы и составляя уравнения потенциальной энергии для каждой из них. Затем он нашел кривую, соответствующую наименьшей энергии, при помощи математического анализа. Она и должна была соответствовать форме висящей цепи. Будущие поколения архитекторов могли использовать найденную форму для сооружения свободно стоящих куполов, не подвешивая в зданиях, которые они строят, настоящих цепей. Рена же форма цепной линии особенно привлекала тем, что она создает измененную перспективу: когда смотришь снизу на такой купол, он кажется выше, чем он есть на самом деле. Применение математики для создания оптических иллюзий было в большой моде в архитектуре периода барокко.
Оставалась еще одна задача: нужно было сделать так, чтобы внешний купол не мог обрушиться внутрь собора и разрушить великолепный внутренний. Поэтому между двумя куполами, которые мы видим, скрыт еще и третий. Недавно у меня была возможность попасть внутрь двух куполов Св. Павла и увидеть третий купол, который, собственно, и обеспечивает поддержку сферического внешнего купола. В этом скрытом куполе также использована цепная линия: чтобы определить форму арки, необходимой для поддержки главки, которую Рен установил в высшей точке внешнего купола. Если подвесить на цепь какой-нибудь груз, он оттянет цепь вниз. При помощи матанализа можно получить математическое описание этой новой формы, соответствующей минимальной энергии. Но интереснее всего вот что: если перевернуть эту новую кривую, получится арка, которая сможет выдержать установленный на ее вершине вес, эквивалентный весу груза, подвешенного на цепи. Именно так Рен и разработал форму внутреннего купола, поддерживающего вершину купола сферического, который мы видим извне.
Самый необычный пример использования цепей с грузами для строительства куполов можно увидеть, если спуститься в подвал храма Саграда Фамилия в Барселоне. Антони Гауди задействовал этот принцип при проектировании крыши еще недостроенной часовни. Он подвешивал множество мешков с песком, имитировавших предполагаемую нагрузку на конструкцию, на целую сеть веревок, которые провисали по цепным линиям. При перевороте кривых, образованных веревками, получалась форма будущей крыши, которая не обрушится под таким весом. Добавляя и передвигая мешки, Гауди добился нужной ему формы крыши часовни, точно зная, что она не провалится, когда он ее построит. Но, чтобы получить математическое описание всех этих кривых, которое можно было бы передать производителям, нужно воспользоваться шорткатом матанализа. Сегодня архитекторы разрабатывают здания криволинейных форм, украшающие панорамы наших городов, только вместо цепей и мешков с песком, которые нужно передвигать вручную, им помогают математический анализ и уравнения, обрабатываемые компьютерами.
Однако матанализ помогает строить не только соборы и небоскребы. Найденные Лейбницем кривые с оптимальными свойствами позволили открыть и кривые, лучше всего подходящие для сооружения американских горок!
Американские горки
Я очень люблю кататься на американских горках. Занудным математикам вроде меня кажется, что вагончики разгоняются до предельных скоростей и в то же время удерживаются на рельсах силой геометрии и матанализа, вложенных в создание этих трасс. В Европе есть одни американские горки, волнующие мою математическую кровь больше, чем какие бы то ни было другие: это трасса Гранд-Нэшнл в Блэкпуле. В поездке по этой трассе можно не только ощутить могущество математического анализа, но и встретиться с одним из самых интересных объектов математической кунсткамеры – лентой Мёбиуса.
Как можно догадаться