- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой
Шрифт:
Интервал:
Закладка:
Есть очень простая формула зависимости площади участка от Х, переменной длины стороны. Поскольку длина участка вдоль берега равна 10 – 2Х, площадь участка А должна составлять
Х × (10 – 2Х) = 10Х – 2Х2.
Какое значение Х делает эту величину наибольшей? Можно, конечно, просто перебирать значения Х, пока нам не покажется, что мы нашли такое из них, которое делает площадь самой большой. Но это долгий путь к решению задачи. Ферма понял, что существует и другой, более легкий.
Рис. 6.3. График зависимости площади участка от длины одной из сторон. Площадь максимальна там, где горизонтальная прямая пересекает кривую в одной точке, а не в двух
Шорткат, который он нашел, состоял в преобразовании формулы площади в изображение. Построим график функции 10Х – 2Х2. На самом деле этот шорткат в итоге избавляет и от необходимости строить графики, но, чтобы найти шорткат, иногда приходится сначала идти в обход. График представляет собой кривую, сперва растущую от Х = 0 до пика, а затем спадающую до Х = 5, при котором площадь равна нулю. Самое главное – выяснить, где находится пик. Именно в этой точке площадь будет наибольшей. Какое же значение Х соответствует пику?
Проведем на графике горизонтальную прямую. В общем случае она пересекает кривую в двух точках – кроме самой вершины, в которой горизонтальная прямая лишь касается кривой в одной точке. Эту точку мы и ищем: это вершина графика, соответствующая самой большой площади. Ферма нашел способ определять эту точку, не строя графика. Оказалось, что оптимальную площадь участка дает значение Х = 2,5. Участок получился не квадратом, а прямоугольником, длинная сторона которого в два раза длиннее короткой. Если вы не боитесь алгебраических выкладок, вот вам более подробное изложение идеи Ферма.
Пусть Х = а. Тогда горизонтальная прямая, проведенная через эту точку, пересечет другую сторону кривой в некоторой точке X = b, в которой высота кривой такая же, как и в точке Х = а. Значит, это точка, в которой
10a – 2a2 = 10b – 2b2
Это равенство можно упростить при помощи некоторых алгебраических приемов. Перенесем все члены с квадратами в одну сторону:
2a2 – 2b2 = 10a – 10b
Но выражение с квадратами можно разложить на множители:
2(a – b)(a + b) = 10(a – b)
Разложить алгебраическое выражение на множители означает переписать его в виде произведения двух более простых выражений. В нашем случае речь идет о разности двух квадратов, которая попросту равна произведению (a – b) и (a + b). Но теперь видно, что обе части нового равенства содержат множитель (a – b). Его можно сократить с обеих сторон, и тогда мы получим
(a + b) = 5
Но Ферма интересовала та точка, в которой a и b равны, потому что именно она соответствует вершине кривой. В этой точке b = a. Подставив это в наше уравнение, получим
2a = 5
Точка, в которой находится вершина кривой, соответствует а, равному 2,5. Это длина стороны прямоугольника, дающего наибольшую площадь земельного участка. Следовательно, размеры прямоугольника – 2,5 на 5.
В приведенных выше вычислениях есть один интересный момент, касающийся деления на (a – b). С этой операцией все в порядке, кроме случая, когда a = b, в котором получается, что мы делим на 0, чего делать нельзя. Но погодите. Разве Ферма не хотел найти именно ту точку, в которой a = b? Как же с этим быть?
Для этого и нужен математический анализ. Он делает деление на 0 осмысленной операцией.
Мы видели математические операции, но где же математический анализ? Анализ позволяет получить наклон касательной к каждой точке кривой. Ферма понял, что максимум площади достигается в точке, в которой касательная горизонтальна. Это та точка, в которой наклон, то есть производная, равен нулю. Именно в этом заключается метод использования матанализа для поиска оптимальных значений функций: нужно найти точку, в которой производная функции равна нулю.
Кривая, описывающая площадь земельного участка, выглядит на удивление похоже на кривую, которую Ньютон построил для определения высоты полета своего яблока. Формула площади участка, 10Х – 2Х2, и формула удаления яблока от моей руки – 25t – 5t2, – это, по сути дела, одна и та же формула. Вторая получается из первой простым умножением на 2,5. В этом состоит один из великих шорткатов математики. Одно и то же уравнение может быть применимо ко множеству разных сценариев. В случае яблока точка, соответствующая наибольшей высоте его полета в воздухе, – это тот момент, когда скорость яблока становится нулевой и оно начинает лететь в противоположном направлении.
Но формулы такого рода могут описывать и многие другие вещи: энергопотребление, количество стройматериалов, длительность поездки. Появление метода, позволяющего найти наилучший способ максимизации или минимизации этих разнообразных величин, совершило настоящую революцию. Если формула дает зависимость прибыли компании от разных факторов, которые компания может регулировать, кому не захочется иметь средство, позволяющее настроить эти факторы так, чтобы получать наибольшую прибыль? Математический анализ – это шорткат к максимальной прибыльности.
Математика на стройке
Хотя математический анализ в первую очередь был создан, чтобы анализировать изменения, происходящие с миром во времени, он также полезен и для изучения изменений, происходящих вне времени. В частности, матанализ стал мощным средством для рассмотрения разных вариантов

