- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Этюды о Галилее - Александр Владимирович Койре
Шрифт:
Интервал:
Закладка:
Время, за которое данное расстояние покоившееся тело проходит с равноускоренным движением, равно времени, за которое то же самое расстояние будет пройдено тем же самым телом, движущимся равномерно со скоростью, равной средней степени между наименьшей и наибольшей степенью вышеупомянутого равноускоренного движения.
Пусть отрезок АВ представляет время, за которое тело (находясь в движении) прошло расстояния CD, двигаясь равноускоренно из состояния покоя; и пусть последняя и наибольшая степень возрастающей скорости за моменты времени АВ будет представлена отрезком ЕВ, произвольным образом проведенным к АВ. Если соединить точки А и Е, то все отрезки, проведенные параллельно ЕВ из всех точек АЕ, будут представлять степени возрастающей скорости после момента А. Далее, если отрезок ВЕ разделить пополам точкой F и провести отрезки FG и AG параллельно BA и BF, получится параллелограмм AGFB, который будет равен треугольнику AEB, и его сторона GF пересекает отрезок AE в точке I, деля его пополам. Если продолжить параллельные отрезки треугольника AEB до IG, то мы получим совокупность (aggregatum) всех параллельных отрезков, содержащихся в четырехугольнике, равную множеству, содержащемуся в треугольнике АЕВ, поскольку отрезки, содержащиеся в треугольнике IEF, равны тем, что содержатся в треугольнике GIA; что касается отрезков, содержащихся в трапеции AIFB, то они общие. Тем не менее, так как всем и каждому моменту времени АВ соответствуют все и каждая точка на отрезке АВЕ и так как параллельные отрезки, проведенные из этих точек, содержащиеся в треугольнике АЕВ, представляют увеличивающиеся степени возрастающей скорости, в то время как отрезки, содержащиеся в параллелограмме, равным образом представляют столько же степеней скорости не возрастающей, но равной [одинаковой], ясно, что в ускоренном движении, сообразно возрастанию отрезков треугольника АЕВ, не хватает столько моментов скорости, сколько в равномерном движении, сообразно отрезкам параллелограмма GB. Действительно, моменты, отсутствующие в первой половине ускоренного движения (а именно моменты, представленные отрезками в треугольнике AGI), компенсируются моментами, представленными отрезками внутри треугольника IEF. Таким образом, ясно, что расстояния, пройденные за одинаковое время двумя телами, одно из которых начало двигаться равноускоренно из состояния покоя, а другое двигалось равномерно, с моментом [скорости], равным половине момента максимальной скорости ускоряющегося движения, будут одинаковыми. Что и требовалось доказать.
Мы видим, что в доказательстве в «Беседах…» использованы те же понятия и те же методы, что и в «Диалоге…»: момент, мгновенная скорость, сумма или множество моментов или скоростей. Однако это доказательство более непосредственное, более полное: движение более не разделяется на фрагменты, но, скажем так, рассматривается в целом. Поэтому для расчета пройденного расстояния не нужно приводить идею возможного движения – равномерного движения, которое предмет мог бы совершать после того, как завершилось ускоренное движение. Последнее, вернее, сумма его скоростей или моментов, приравнивается здесь к сумме моментов равномерного движения, скорость которого равна половине максимальной скорости, достигаемой при ускоряющемся движении. Подобный метод, пожалуй, позволяет продвинуться, однако это перевешивается тем, что здесь куда более явно, нежели в доказательстве из «Диалога…», рассуждение Галилея применяется к завершенному и приостановленному движению. Конечно же, метод представлен в общем виде и может быть применен ко всякому ускоренному движению, при условии что ускорение равномерно, какими бы ни были расстояние и длительность. Но все эти движения можно помыслить лишь завершенными, и то, чего не хватает доказательству Галилея, так это просто показать «высшее сродство движения и времени», решающую роль времени. В том числе поэтому к этой первой теореме (единственной, которая была доказана в «Диалоге») в «Беседах и математических доказательствах…» прибавляется вторая365:
Если из состояния покоя тело начинает падать, равномерно ускоряясь, расстояния, пройденные им за любые промежутки времени, соотносятся между собой в удвоенном отношении времени, т. е. как квадраты времени.
Пусть течение времени начиная с некоторого момента А будет представлено отрезком АВ, на котором мы произвольно возьмем два временных отрезка AD и ВЕ; пусть HI будет линией, вдоль которой тело, начиная от точки H, принятой за начало движения, падает с равномерным ускорением; пусть HL будет расстоянием, пройденным за первый промежуток времени AD, а HM – расстоянием, которое тело пройдет за время AE; я утверждаю, что отношение расстояния HL к HM равно удвоенному отношению квадратов ЕА и AD. Проведем линию ВС366, образующую произвольный угол с линией АВ, и точки D, E, из которых мы проведем параллельные отрезки DO, EP: DO будет представлять наибольшую степень скорости, достигаемую в момент Е временного промежутка ВЕ. А так как ранее мы доказали в отношении пройденных расстояний, что расстояния – одно из которых было пройдено телом, двигавшимся с равномерным ускорением из состояния покоя, а другое за то же время было пройдено другим телом, двигавшимся равномерно со скоростью, равной половине наибольшей скорости, достигнутой при ускоряющемся движении, – равны, из этого следует, что расстояния МН, LH будут такими же, как если бы были пройдены равномерными движениями, скорости которых были бы равны половине PE, OD, за время DA, AE. Таким образом, если бы было показано, что расстояния MH, LH относятся друг к другу как квадраты EA и DA, то наша теорема была бы доказана. Однако в четвертом положении книги I

