- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС
Шрифт:
Интервал:
Закладка:
Если мы просуммируем значения столбца, который включает 61 ассоциированную вероятность, получим 7,979105. Поэтому среднее геометрическое при f= 0,01 равно:
G = 1,0053555695 ^ (1/7,979105) = 1,00535555695 ^ 0,1253273393 = 1,00066963
Мы можем также рассчитать среднюю геометрическую сделку (GAT). Это сумма, которую вы бы заработали в среднем на контракт за сделку, если бы торговали при этом распределении результатов и при данном значении f.
где G(f) = среднее геометрическое для данного значения f;
W = ассоциированное P&L наихудшего случая.
GAT = (1,00066963 - 1) * (-4899,57 / (-0,01)) = 0,00066963 * 489957 = 328,09
Таким образом, в среднем на контракт можно ожидать выигрыша в 328,09 доллара. Теперь перейдем к следующему значению f, которое должно тестироваться в соответствии с выбранной процедурой поиска оптимального f. В нашем случае мы проверяем значения f от 0 до 1 с шагом 0,01, так что следующим тестируемым значением f будет 0,02. Рассчитаем новый столбец ассоциированных HPR, а также найдем TWR и среднее геометрическое. Значение f, которое в результате даст наивысшее среднее геометрическое, является оптимальным (для вводных параметров, которые мы использовали). Если бы для данного примера мы продолжили поиск оптимального f, то получили бы f= 0,744 (при расчете оптимального f используется шаг 0,001). Среднее геометрическое в этом случае равно 1,0265. Соответствующая средняя геометрическая сделка составит 174,45 доллара.
Следует отметить, что само по себе значение TWR не столь важно. Когда мы рассчитываем среднее геометрическое параметрически, как в этом примере, TWR просто является промежуточным шагом для получения этого среднего геометрического. Теперь мы можем рассчитать, каким было бы наше TWR после Х сделок, возведя среднее геометрическое в степень X. Поэтому если мы хотим рассчитать TWR для 232 сделок при среднем геометрическом 1,0265, то следует возвести 1,0265 в степень 232, что даст 431,79. В таком случае, при торговле с оптимальным f =0,744 можно ожидать прибыль 43079% ((431,79 - 1) * 100) после 232 сделок. Еще одним побочным продуктом, который мы рассчитаем, будет порог геометрической торговли (2.02):
Порог геометрической торговли = 330,13/174,45 * -4899,57 / -0,744 = 12462,32
Отметьте, что значение средней арифметической сделки 330,13 доллара не является результатом, полученным с помощью этого метода, а используется как один из вводных параметров.
Мы можем преобразовать оптимальное f в количество контрактов для торговли с помощью уравнения:
(3.34) K=E/Q,
где К = число контрактов для торговли;
Е = текущий баланс счета.
(3.35) Q=W/(-f),
где W = ассоциированное P&L наихудшего случая;
Отметьте, что переменная Q представляет собой число, на которое вы должны разделить баланс счета, чтобы узнать сколькими контрактами торговать, при этом баланс должен ежедневно корректироваться. Возвращаясь к нашему примеру: Q = -4899,57 / -0,744 = $6585,44
Следовательно, мы будем торговать 1 контрактом на каждые 6585,44 доллара на балансе счета. Для счета размером в 25 000 долларов это означает, что мы будем торговать:
К =25 000/6585,44 = 3,796253553
Так как мы не можем торговать дробными контрактами, то должны округлить это число 3,796253553 вниз до ближайшего целого числа. Поэтому для счета в 25 000 долларов мы будем торговать 3 контрактами. Причина, по которой мы всегда будем округлять вниз, а не вверх, состоит в том, что плата за нахождение ниже оптимального f меньше, чем плата за нахождение выше.
Отметьте, насколько чувствительна торговля оптимальным числом контрактов к наихудшему убытку. Наихудший убыток зависит только от того, на сколько стандартных отклонений вы отходите влево от среднего. Данный ограничительный параметр, интервал, выраженный в количестве стандартных отклонений, очень важен. В нашем расчете мы выбрали три сигма. Это означает, что мы допускаем проигрыш в три сигма. Однако проигрыш за пределами трех сигма может сильно нам повредить, если он выйдет слишком далеко за это значение. Поэтому вам следует быть очень осторожными с выбором этого ограничительного параметра. От величины интервала зависит очень многое. Заметьте, что для простоты изложения мы не учитывали комиссионные и проскальзывание. Если учитывать комиссионные и проскальзывание, то следует вычесть Х долларов комиссионных и проскальзывания из каждой сделки в самом начале. Затем следует рассчитать среднюю арифметическую сделку и стандартное отклонение на основе 232 измененных сделок и далее выполнить уже известную процедуру. Теперь рассмотрим сценарий «что если». Допустим, мы хотим посмотреть, что произойдет, если прибыль в средней сделке уменьшится вдвое (сжатие = 0,5). Далее предположим, что рынок становится очень волатильным и дисперсия увеличивается на 60% (растяжение = 1,6). Подставляя эти параметры в систему, мы можем посмотреть, как они влияют на оптимальное f, и скорректировать нашу торговлю до того, как эти изменения произойдут на самом деле. Таким образом, оптимальное f будет равно 0,262, что соответствует торговле 1 контрактом на каждые 31 305,92 доллара на балансе счета (так как P&L наихудшего случая сильно за-
висит от растяжения и сжатия). Среднее геометрическое упадет до 1,0027, средняя геометрическая сделка уменьшится до 83,02 доллара, a TWR за 232 сделки будет равно 1,869. Такие изменения вызваны уменьшением средней сделки на 50% и увеличением стандартного отклонения на 60%, что вполне может произойти на практике. Также возможно, что будущее будет более благоприятно, чем прошлое. Мы можем проанализировать другую ситуацию. Допустим, мы хотим посмотреть, что произойдет, если наша средняя прибыль увеличится на 10%. Для этого следует ввести значение сжатия 1,1. Параметры «что если», растяжение и сжатие, крайне важны в управлении капиталом.
Чем ближе ваше распределение торговых P&L к нормальному, тем лучше будет работать метод. Проблема почти всех методов управления деньгами состоит в том, что следует учитывать определенный «коэффициент ухудшения». Здесь ухудшение — это разница между нормальным распределением и распределением, которое вы реально получаете. Разница между ними и есть коэффициент ухудшения, и чем больше этот коэффициент, тем менее эффективным становится метод.
С помощью вышеописанного метода мы определили, что торговля 1 контрактом на каждые 6585,44 доллара на балансе счета оптимальна. Однако если бы мы совершили эти сделки на практике и определили оптимальное f эмпирически, то оптимальным был бы 1 контракт на каждые 7918,04 доллара на балансе счета. Как можно видеть, использование нормального распределения сместило нас слегка вправо вдоль кривой f и привело к торговле несколько большим числом контрактов, чем предлагает эмпирический метод.
Однако, как мы увидим позже, многое говорит в пользу того, что будущее распределение цен будет нормальным. Когда мы покупаем или продаем опцион, предположение, что будущее распределение изменений цены базового инструмента будет нормальным, уже заложено в цену опциона. Точно так же можно сказать, что трейдеры, не использующие механические системы, получат в будущем результаты, которые нормально распределены.
В методе, описанном в этой главе, используются неприведенные данные. При использовании приведенных данных метод будет выглядеть следующим образом:
1. До того как данные нормированы, их следует привести к текущим ценам путем преобразования всех торговых прибылей и убытков в процентные прибыли и убытки с помощью уравнений с (2.10а) по (2.10в). Затем эти процентные прибыли и убытки следует умножить на текущую цену
2. Когда вы перейдете к нормированию этих данных, нормируйте приведенные данные, используя среднее и стандартное отклонение приведенных данных.
3. Далее, определите оптимальное f, среднее геометрическое и TWR. Средняя геометрическая сделка, средняя арифметическая сделка и порог геометрической торговли справедливы только для текущей цены базового инструмента. Когда цена базового инструмента изменяется, процедура должна быть проведена заново. Когда вы перейдете к повторному проведению процедуры с другой ценой базового инструмента, вы получите то же оптимальное f, среднее геометрическое и TWR. Однако средняя арифметическая сделка, средняя геометрическая сделка и порог геометрической торговли будут другими в зависимости от новой цены базового инструмента.
4. Количество контрактов для торговли, рассчитываемое с помощью уравнения (3.34), соответствующим образом изменится. P&L наихудшего случая, переменная W, используемая в уравнении (3.34), также изменится.
Из этой главы, мы узнали, как найти оптимальное f по распределению вероятности. Мы использовали нормальное распределение, так как оно описывает многие естественно происходящие процессы. Кроме того, с ним легче работать, чем со многими другими распределениями, так как можно рассчитать интеграл функции нормального распределения с помощью уравнения (3.21)[16]. Однако нормальное распределение зачастую является неполной моделью для распределения торговых прибылей и убытков. Какая модель будет приемлемой для наших целей? В следующей главе мы ответим на этот вопрос и будем полагаться на методы из главы 3 при работе с любым видом распределения вероятности независимо от того, существует интеграл функции распределения или нет.

