Математика рынка. Обслуживание случайных потоков - Александр Берлин
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Название: Математика рынка. Обслуживание случайных потоков
- Автор: Александр Берлин
Шрифт:
Интервал:
Закладка:
Математика рынка
Обслуживание случайных потоков
Александр Берлин
© Александр Берлин, 2017
ISBN 978-5-4485-2545-2
Создано в интеллектуальной издательской системе Ridero
Список обозначений
A- относительное (удельное) потребление. Предложенная нагрузка
a – интенсивность нагрузки, поступающей от одного источника
поступивших заявок
– обслуженных заявок
– потерянных заявок
– средняя длина очереди или среднее число задержанных партий товаров
среднее число заявок от одного потребителя в единицу времени
от одной группы индивидуальных потребителей
— среднее число заявок от одного потребителя в единицу времени
от – посредников (например, агентства по покупке и продаже квартир)
Ei, v (A) =Ei (A) – вероятность того, что в произвольный момент
времени стационарного режима в полнодоступной группе ёмкостью v
потребителей, на которую поступает интенсивность партий товаров A, создаваемая простейшим потоком товаров, занято i потребителей
E1, v (A).– табличные числовые значения для первой формулы Эрланга E2, v (A).– табличные числовые значения для второй формулы Эрланга
р (γ> 0) – вероятность того, что время ожидания больше нуля – то есть вероятность очереди
p задер. (γ> t) – вероятность ожидания задержанного товара
свыше времени t
p (R> r) – вероятность того, что длина очереди превышает заданную величину r
Pмакс-максимальное потребление
Pреал – реальное потребление.
– потери по числу поступивших заявок на поставку товара
– потери по объему товара
P t – потери по времени реализации
.
– средняя длительность потребления.
– средняя длина очереди
поступившего товара
– обслуженного товара
– потерянного товара
A обсл. (t1, t 2) = – обслуженное предложение.
a0б (t1, t2) – обслуженный рынком спрос за промежуток времени (t1, t2) Yпост. (t1,t2) — поступающее предложение товаров за промежуток времени (t1, t2)
aпост. (t1, t2) – поступающий на рынок спрос за промежуток времени
(t1, t2)
aпотер. (t1, t2) – потерянный рынком спрос в течение промежутка времени (t1, t2)
aвнс. величина нагрузки за время наибольшей нагрузки (ВНС);
aнабл – величина нагрузки за время наблюдения
α- параметр примитивного потока группы партий в свободном состоянии (формула Энгсета).
β – параметр показательного закона распределения длительности потребления.
η- пропускная способность групп потребителей
γ – текущее время ожидания
– среднее время ожидания по отношению ко всем поступившим вызовам
з среднее время ожидания по отношению только к задержанным вызовам
λ s (t) параметр симметричного потока.
ω 0 (z) – вероятность отсутствия товаров на промежутке времени длиной z (Поток Пальма).
Введение
Прежде чем начать составлять и преобразовывать формулы. Я хотел бы задать вопрос читателю.
Я хочу продать что-то новое или старое, красивое или безобразное – бриллианты, навоз, идеи, отремонтировать ваш дом. Почему я не могу сосчитать, сколько я смогу продать этого товара в течение месяца дня, года?
Почему возникают кризисы перепроизводства? И при этом, почему столько оптимистов или пессимистов говорят, что всё наладится или рухнет. И я скорее не доверяю им, чем доверяю. Развелось столько пророков в сети Интернет и в газетах. А как прекрасно, если бы все это можно было бы сосчитать рынок. Например, как в механике.
Представьте Вы хотите проехать из Санкт Петербурга в Москву (расстояние 600 км). Вы вспоминаете формулу равномерного движения, рассчитываете, что если вы будете ехать непрерывно и равномерно со скоростью 60 км в час, то это займёт 10 часов.
Давайте будем честными. Вы никогда не будете ехать равномерно и непрерывно. На одном участке Вы будете «лететь», а на другом ехать и никуда не спешить. Вы сделаете на втором часу перерыв в езде. Кроме того, получив этот результат, Вы полетите самолётом. А может, не тронетесь никуда. Так что математика не может за Вас принять решение.
Вывод отсюда парадоксальный, что экономика – это политика. А математика может только сказать, что будет при принятых Вами решениях.
Можно также сказать, что экономика – это психология. Например, известен «очевидный» экономический закон, который широко используется для анализа экономических процессов- это паника при ухудшении каких-то показтелей рынка
Математика не даёт прогнозов. Она только отвечает на Ваши вопросы, что будет в заданных вами обстоятельствах. Один из великих инвесторов 21—22 века Уоррен Баффет, говорил: «Я не делаю прогнозы, я даю оценки. Оценка не то, что прогноз». [3.3., стр.21, стр.23].
Теперь вопрос! Нельзя ли разработать такие математические методы, которые также как в механике говорили, что будет в заданных обстоятельствах. И если эти обстоятельства возникли можно рассчитать своё поведение и поведение среды.
К какой области математики они должны принадлежать?
Очевидно, что к теории вероятностей.
Труды, которые рассматривают основные вопросы экономики (спрос, предложения, цены и прочее), в основном применяют методы детерминированной математики [Альфред Маршалл, Кейнс1].
Экономика широко пользуется методами теории массового обслуживания. Например, для расчета числа кассовых аппаратов, очередей и т. п. При этом наиболее часто используется название «теория очередей».
В этой книге мы покажем, что применение теории случайных потоков к основным процессам на рынке – предложению и потреблению товаров, получению доходов позволяет ответить на большинство вопросов, которые возникают сегодня на практике.
Такой подход позволяет получить очень интересные результаты.
Перечислим эти результаты:
определена универсальная математическая характеристика товара – относительное потребление и потери (доля непроданных товаров);
представлена математическая модель рынка;
на основе этой модели, показано, что расчеты параметров рынка можно проводить по формулам теории массового обслуживания в частности по формулам Эрланга, Энгсета и др;
согласно формуле Эрланга показана зависимость между спросом и предложением, а также величиной потерь (величиной не проданных товаров);
расчеты по формуле Эрланга показывают, что основное влияние на спрос оказывает предложение (величина поставки), при росте предложения увеличиваются потери (доля непроданных товаров), поэтому наращивания предложения становится нецелесообразным. И как следствие, в зависимости от себестоимости падают доходы;
цена товара влияет на спрос только на начальном этапе, а далее на этапе насыщенного рынка, она играет роль, фактора конкурентной борьбы.
Результаты позволяют:
– проводить оценку перспектив различных бизнесов,
– оценивать величину устанавливаемой цены,
– определять возможные моменты кризисов и их периодичность (циклы Кондратьева) [3.7].
В заключение надо сказать, что в книге за основу изложения приняты результаты, полученные моим учителем Борисом Самойловичем Лившицем [2.1] и недавно скончавшимся его лучшим учеником Яковом Владимировичем Фидлиным. [2.2].
Их книга Лившиц Б. С., Фидлин Я. В., Харкевич А. Д. Теория телеграфных и телефонных сообщений. М.: Связь, 1971. до сих пор образец по содержанию и строгости и четкости математических доказательств.
Очень большие трудности вызывал у автора вопрос как подробно приводить математические доказательства. Как показал опыт – математические аспекты теории обслуживания случайных потоков известны далеко не всем. Поэтому в книгу включены сведения, позволяющие читателю получить необходимые сведения, не тратя массу времени на обращения к первоисточникам. Для корректности в книге есть много ссылок к первоисточникам.
Для тех, кто активно заинтересуется вопросам применения теории обслуживания случайных потоков, в приложении приведены отдельно книги по теории массового облуживания на русском и английском языке.
Список литературы составлен по разделам: