Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Прочая научная литература » Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Читать онлайн Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 35 36 37 38 39 40 41 42 43 ... 78
Перейти на страницу:

(4.03) Y=1/(X-LOC^2+1),

где Y = ордината характеристической функции;

Х = количество стандартных отклонений;

LOC = переменная, задающая расположение среднего значения, первый момент распределения.

Рисунок 4-2 LOC = 0 SCALE = I SKEW = 0 KURT = 2

Рисунок 4-3 LOC =0,5, SCALE = 1, SKEW = 0, KURT= 2

Таким образом, если бы мы хотели изменить расположение, передвинув график влево на 0,5 единицы, мы бы установили LOC на -0.5. Этот график изображен на рисунке 4-3.

Таким же образом, если бы мы хотели сместить кривую вправо, то исполь­зовали бы положительное значение для переменной LOC. LOC с нулевым значением не будет смещать график, как показано на рисунке 4-2.

Показатель в знаменателе влияет на эксцесс. До настоящего момента экс­цесс был равен 2, но мы можем изменить его, изменив значение показателя. Те­перь формулу нашей характеристической функции можно записать следующим образом:

(4.04) Y = 1 / ((X - LOC)^ KURT + 1),

где Y == ордината характеристической функции;

Х = количество стандартных отклонений;

LOC = переменная, задающая расположение среднего значения, первый момент распределения;

KURT = переменная, задающая эксцесс, четвертый момент распределения.

Рисунки 4-4 и 4-5 показывают влияние эксцесса на нашу характеристическую функцию. Отметьте: чем выше показатель, тем более плосковерхое и тонкохвостое распределение (эксцесс меньше нормального), и чем меньше показа­тель, тем более острый верх и тем толще хвосты распределения (эксцесс боль­ше нормального). Чтобы не получить иррациональное число, когда KURT < 1, мы будем исполь­зовать абсолютное значение коэффициента в знаменателе. Это не повлияет на форму кривой. Таким образом, мы можем переписать уравнение (4.04) следую­щим образом:

(4.04) Y = 1/(ABS(X - LOC)^ KURT + 1)

Мы можем добавить множитель в знаменателе, чтобы контролировать шири­ну, второй момент распределения. Характеристическая функция будет выглядеть следующим образом:

(4.5) Y = 1 / (ABS((X - LOC) * SCALE)^ KURT + 1),

где Y = ордината характеристической функции;

X = количество стандартных отклонений;

LOC = переменная, задающая расположение среднего значения, первый момент распределения;

Рисунок 4-4 LOC=0, SCALE =1, SKEW = 0, KURT = 3

Рисунок 4-5 LOG = 0, SCALE = 1, SKEW = О, KURT = 1

KURT = переменная, задающая эксцесс, четвертый момент распределения;

SCALE = переменная, задающая ширину, второй момент распределения.

Рисунки 4-6 и 4-7 иллюстрируют изменение параметра ширины. Действие этого параметра можно представить как движение горизонтальной оси вверх или вниз Когда ось сдвигается вверх (при уменьшении ширины), график расширяется (см рисунок 4-6), как будто мы смотрим на его верхнюю часть. На рисунке 4-7 показа­на обратная ситуация, когда горизонтальная ось сдвигается вниз и кривая распре­деления сжимается. Теперь у нас есть характеристическая функция распределения, с помо­щью которой мы контролируем три из четырех моментов распределения Сейчас распределение симметрично. Для этой функции нам необходимо до­бавить коэффициент асимметрии, третий момент распределения. Характе­ристическая функция тогда будет выглядеть следующим образом:

где С = показатель асимметрии, рассчитанный следующим образом:

Y = ордината характеристической функции;

Х= количество стандартных отклонений;

LOC= переменная, задающая расположение среднего значения, первый момент распределения;

KURT = переменная, задающая эксцесс,

четвертый момент распределения;

SCALE = переменная, задающая ширину, второй момент распределения;

SKEW= переменная, задающая асимметрию, третий момент распределения;

sign() = функция знака, число 1 или -1. Знак Х рассчитывается как X/ ABS(X) для X, не равного 0. Если Х равно нулю, знак будет счи­таться положительным;

Рисунки 4-8 и 4-9 показывают действие переменной асимметрии на распре­деление. Отметим несколько важных особенностей параметров LOC, SCALE, SKEW и KURT. За исключением переменной LOC (которая выражена как число стандартных значений для смещения распределения), другие три

Рисунок 4-6 LOC=0, SCALE =0,5, SKEW = 0, KURT=2

Рисунок 4-7 LOC=0, SCALE = 2, SKEW = 0, KURT=2,

Рисунок 4-8 LOC=0, SCALE =1, SKEW =-0,5, KURT = 2.

Рисунок 4-9 LOG = 0, SCALE = 1, SKEW = +0,5, KURT = 2.

переменные являются безразмерными, то есть их значения являются числами, ко­торые характеризуют форму распределения и относятся только к этому рас­пределению. Значения параметров будут другими, если вы примените стандартные измери­тельные методы, детально описанные в разделе «Величины, описывающие рас­пределения» главы 3. Например, если вы определите один из коэффициентов асимметрии Пирсона на наборе данных, он будет отличаться от значения пере­менной SKEW для распределений, рассматриваемых здесь. Значения четырех пе­ременных уникальны для рассматриваемого распределения и имеют смысл толь­ко в данном контексте. Крайне важен интервал возможных значений этих переменных. Переменная SCALE всегда должна быть положительной, кроме того, она не ограничена сверху. То же самое верно для переменной KURT. На практике, однако, лучше использовать значения от 0,5 до 3, в крайнем случае, от 0,05 до 5. Вы можете ис­пользовать значения и за пределами этих крайних точек при условии, что они больше нуля.

Переменная LOC может быть положительной, отрицательной или нулем. Па­раметр SKEW должен быть больше или равен -1, и меньше или равен +1. Когда SKEW равен +1, вся правая сторона распределения (справа от пика) равна пику. Когда SKEW равен -1, пику равна вся левая сторона распределения. Интервалы значений переменных в общем виде таковы:

(4.08) - бесконечность < LOC < + бесконечность

(4.09) SCALE > 0

(4.10) -1<=SKEW<=+1

(4.11) KURT > О

Рисунки с 4-2 по 4-9 показывают, как легко изменяется распределение. Мы мо­жем подогнать эти четыре параметра таким образом, чтобы получившееся в ре­зультате распределение было похоже на любое другое распределение.

Подгонка параметров распределения

Как и в процедуре, описанной в главе 3, по поиску оптимального f при нор­мальном распределении, мы должны преобразовать необработанные торго­вые данные в стандартные единицы. Сначала мы вычтем среднее из каждой сделки, а затем разделим полученное значение на стандартное отклонение. Далее мы будем работать с данными в стандартных единицах. После того как

мы приведем сделки к стандартным значениям, можно отсортировать их в порядке возрастания. На основе полученных данных мы сможем провести тест К-С. Нашей целью является поиск таких значений LOC, SCALE, SKEW и KURT, которые наилучшим образом подходят для фактического распределения сделок. Для определения «наилучшего приближения» мы полагаемся на тест К-С. Рас­считаем значения параметров, используя «метод грубой силы двадцатого века». Мы просчитаем каждую комбинацию для KURT от 3 до 0,5 с шагом -0,1 (мы мо­жем также взять интервал от 0,5 до 3 с шагом 0,1, так как направление не имеет значения). Далее просчитаем каждую комбинацию для SCALE от 3 до 0,5 с шагом -0,1. Пока оставим LOC и SKEW равными 0. Таким образом, нам надо обработать следующие комбинации:

LOC SCALE SKEW KURT 0 3 0 3 о 3 0 2,9 о 3 0 2,8 о 3 0 2,7 о 3 0 2,6 о 3 0 2,5 о 3 0 2,4 о 3 0 2,3 о 3 0 2,2 о 3 0 2,1 о 3 0 2 о 3 0 1,9 * * * * * * * * * * * * о 2,9 0 3 о 2,9 0 2,9 * * * * * * * * * * * * о 0,5 0 0,6 о 0,5 0 0,5

Для каждой комбинации проведем тест К-С. Комбинацию, которая даст наи­меньшую статистику К-С, будем считать оптимальной для параметров SKALE и KURT (на данный момент). Чтобы провести тест К-С для каждой комбинации, нам необходимо как фактическое распределение, так и теоретическое распределение (определяе­мое параметрами тестируемого характеристического распределения). Мы уже знаем, как создать функцию распределения вероятности X/N, где N яв­ляется общим числом сделок, а Х является рангом (от 1 до N) данной сделки. Теперь нам надо рассчитать ФРВ для теоретического распределения при данных значениях параметров LOC, SCALE, SKEW и KURT. У нас есть характеристическая функция регулируемого распределения, она за­дается уравнением (4.06). Чтобы получить ФРВ из характеристической функции, необходимо найти интеграл характеристической функции. Мы обозначаем ин­теграл, т.е. площадь под кривой характеристической функции в точке X, как N(X). Таким образом, так как уравнение (4.06) дает первую производную интеграла, мы обозначим уравнение (4.06) как N'(X). В большинстве случаев вы не сможете вывести интеграл функции, даже если вы опытный математик. Поэтому вместо интегрирования функции (4.06) мы будем использовать другой метод. Этот метод потребует больших усилий, но он применим к любой функции.

1 ... 35 36 37 38 39 40 41 42 43 ... 78
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС торрент бесплатно.
Комментарии