Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Математика » Управление рисками рыночных систем (математическое моделирование) - Владимир Живетин

Управление рисками рыночных систем (математическое моделирование) - Владимир Живетин

Читать онлайн Управление рисками рыночных систем (математическое моделирование) - Владимир Живетин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 17 18 19 20 21 22 23
Перейти на страницу:

Рис. 1.33                                           Рис. 1.34

Рис. 1.35                                                 Рис. 1.36

Используя (1.3) и независимость α и β, получим

P2 = P[Aα ∩ B'γ] = P(AD) + P(AK) + P(BD) +

+ P(BK) + P(CD) + P(CK) = Р12 + Р22,

где

P12 = P(AD) + P(BD) + P(CD) = P(G1) + P(G3) + P(G5);

Р22 = P(AK) + P(BK) + P(CK) = P(G2) + P(G4) + P(G);

φα(x) – плотность вероятностей случайной величины α, φβ(y) – плотность вероятностей случайной величины β;

Таким образом, Р2 есть сумма двух вероятностей, одна из которых обусловлена событиями D, вторая – событиями K. Отметим, что полученное выражение справедливо для двустороннего ограничения индикатора х, подлежащего контролю и ограничению, когда измеренная величина хизм в силу погрешностей измерения δх их значения удовлетворяет D или K.

Окончательно,

Из теории вероятностей известно, что

где Fβ(x) – функция распределения случайной величины β; Rβ(x) – дополнительная функция распределения случайной величины β. Тогда формулу (1.4) можно переписать в следующем виде:

Перейдем к вычислению вероятности P3:

P3 = P[Aγ ∩ Bα] + P(Cα ∩ Aγ) =

= P[( ≤ γ ≤ ) ∩ {α < xн) (α > )}] =

= P[{( ≤ γ ≤ ) ∩ (α < )} {( ≤ γ ≤ ) ∩ (α > xв)}] =

= P[{( – α ≤ β ≤ – α) ∩ (α < xн)} {( – α ≤ β ≤ – α) ∩

∩ (α > )}] = P[( – α ≤ β ≤ – α) ∩ (α < xн)] +

+ P[( – α ≤ β ≤ – α) ∩ (α > )].

Таким образом,

Если параметры подчинены односторонним ограничениям, то, согласно формулам (1.5) и (1.6), вероятности событий (Aα ∩ Bγ) и (Aγ ∩ Bα) вычисляются следующим образом. В случае одностороннего ограничения сверху полагаем → –∞, → –∞, тогда Fβ(–∞) = 0:

Если xв, → ∞, то в случае одностороннего ограничения снизу

Аналогично, если , → ∞,

Если xв, →∞, то

Часто при практических расчетах удобно использовать не φα(x), а . В этом случае для индикатора, подлежащего ограничению снизу, получаем:

где W(t, Δx, δx) – совместная плотность распределения случайных процессов Δx, δx в момент времени t; xn = xкдоп.

Вид подынтегральной функции выражений (1.8), (1.9) либо (1.10), (1.11) и основные факторы, подлежащие учету при ее формировании, определяются объектами или подсистемами рыночной системы и их режимом работы, а также множеством других параметров и факторов. При этом погрешность δx, как правило, не оказывает влияния на величину отклонения от номинального режима Δx. Это обстоятельство есть допущение, которое каждый раз необходимо проверять.

С учетом сказанного выше, при практических расчетах вероятностей Pi зависимостью между погрешностями измерения δx и величинами отклонения параметров Δx от номинального режима можно пренебречь. В результате (см. рис. 1.37):

где Δ = хдопхн; Δ = хnхн – Δх.

На рис. 1.37 представлена геометрическая интерпретация событий, соответствующих вероятностям P2 и P3, определяемым по формулам (1.7) и (1.9) (ограничение сверху).

Рис. 1.37

Из последних соотношений следует, что вероятности Р3 и Р2 зависят от плотностей распределения W1(Δx) отклонений x от номинальных значений xн, пороговых xn и допустимых xдоп значений параметров, плотности распределения суммарной погрешности W2(δx). При этом Р3 представляет вероятность попадания точки (Δx, δx) в область , ограниченную прямыми Δx = а = xдопxн и δx = xnxн – Δx (рис. 1.38). Величина δx изменяется от –∞ до b = xnxн. Вероятность попадания точки (Δx, δx) в область представляет собой Р2.

Рис. 1.38

Случай двустороннего ограничения параметров представлен на рис. 1.39. При этом Р3 представляет вероятность попадания точки с координатами (Δx, δx) в области и одновременно, а для Р2 в ,  – одновременно (рис. 1.39).

Рис. 1.39

Значения Р3 и Р2 должны удовлетворять допустимым значениям Рдоп. Если, например, Р3 > Р3доп, то необходимо принимать решение об уменьшении границ пороговых значений xн.

Выводы.

Для практической реализации полученных показателей риска необходимо:

1. Выделить индикаторы, характеризующие потенциальную возможность возникновения критического (опасного) состояния рыночной системы, т. е. провести качественный анализ риска.

2. Для выделенных индикаторов х найти их критические значения.

3. Для численного расчета вероятностных показателей риска необходимо построить математическую модель плотностей вероятностей W(xф, хизм).

4. С целью прогнозирования и управления рисками во времени, а также анализа влияния на показатели риска отдельных факторов риска необходимо разработать математические модели для функций xф и хизм.

Глава II. Кризисы и катастрофы рыночных систем. качественные модели

Оптимист творит

Интеллектуальную собственность,

Пессимист – материальную.

Рыночным системам свойственен закон циклического саморазвития.

Проблема предотвращения кризиса и катастрофы обусловлена взаимодействием общества, рынка и государственной власти. Основное свойство рынка – это его способности: усреднять цены на товары и услуги; осуществлять банкротство неспособных к бизнесу, развитию экономики; формировать оценки стоимости труда; одобрять все то новое, что обусловливает пользу человеку и обществу.

2.1. Эволюция социально-экономических систем

Новое время. Италия XIV–XV вв., другие страны – XV–XVII вв.

Разложение средневековой культуры феодализма началось с зарождения новых духовных процессов в философских школах, участники которых познают новое, позволяющее им изменять естественную связь рассудка, чувства и воли. При этом между чувством и волей (душой и духом) вводится новое понятие – вера, которая требует полного изгнания из жизни спонтанных, неконтролируемых сознанием поступков, слов, побуждений.

1 ... 14 15 16 17 18 19 20 21 22 23
Перейти на страницу:
На этой странице вы можете бесплатно скачать Управление рисками рыночных систем (математическое моделирование) - Владимир Живетин торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергей
Сергей 24.01.2024 - 17:40
Интересно было, если вчитаться