- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд
Шрифт:
Интервал:
Закладка:
Компактная простая группа Ли класса An локально изоморфна группе движений n-мерного комплексного эрмитова эллиптического пространства.
Некомпактные вещественные простые группы Ли класса An локально изоморфны группам движений n-мерных комплексных эрмитовых гиперболического псевдоэллиптических и псевдогиперболических пространств и группе проективных преобразований (n-1)/2-мерного кватернионного проективного пространства.
Компактная простая группа Ли класса Bn локально изоморфна группе движений 2n-мерного вещественного эллиптического пространства.
Некомпактные простые группы Ли класса Bn локально изоморфны группам движений 2n-мерных вещественных гиперболического, псевдоэллиптических и псевдогиперболических пространств.
Рассщепленная простая группа Ли класса Cn локально изоморфна группе симплектических преобразований (2n-1)-мерного симплектического пространства.
Компактная простая группа Ли класса Cn локально изоморфна группе движений (n-1)-мерного кватернионного эрмитова эллиптического пространства.
Остальные некомпактные вещественные простые группы Ли класса Cn локально изоморфны группам движений (n-1)-мерных кватернионных гиперболического, псевдоэллиптических и псевдогиперболических пространств.
Компактная простая группа Ли класса Dn локально изоморфна группе движений (n-1)-мерного вещественного эллиптического пространства.
Некомпактные простые группы Ли класса Dn локально изоморфны группам движений (2n-1)-мерных вещественных гиперболического, псевдоэллиптических и псевдогиперболических пространств и группе симплектических преобразований (2n-1)-мерного кватернионного симпектического пространства.
Классические простые группы Ли допускают также интерпретации в виде групп движений пространств над тензорными произведениями алгебр C, C', H и H'. В частности из того, что тензорное произведение двух полей C изоморфно прямой сумме этих полей, вытекает, что эрмитово эллиптическое пространство над тензорным произведением двух полей C допускает модель в виде пары комплексных эрмитовых эллиптических полей той же размерности. Из того, что тензорное произведение алгебр C и H изоморфно алгебре CM(2), вытекает, что n-мерное эрмитово эллиптическое пространство допускает модель в виде многообразия прямых линий (2n + 1)-мерного комплексного эрмитова эллиптического пространства. Из того, что тензорное произведение двух алгебр H изоморфно алгебре M(4), вытекает, что n-мерное эрмитово эллиптическое пространство над тензорным произведением двух алгебр H допускает модель в виде многообразия 3-мерных плоскостей (4n+3)-мерного вещественного эллиптического пространства. Эти модели были построены моими учениками Н.Т.Аббасовым и Л.В.Румянцевой.
Образы симметрии
Все вещественные и эрмитовы неевклидовы пространства, группы движений которых простые группы Ли, изометричны симметрическим римановым или псевдоримановым пространствам, поэтому точки этих пространств являются образами симметрии. Образами симметрии являются также 0-пары ( т.е. пары точка + гиперплоскость) проективных пространств и m-пары (т.е.пары n-m-1)-мерная плоскости n-мерного проективного пространства. Отражение точки Х от 0-пары, состоящей из точки А и гиперплоскости U, переводит точку Х в точку X' прямой АХ, являющуюся четвертой гармонической для точек А, Х и точки пересечения прямой АХ с гиперплоскостью U. Отражение точки Х от m-пары, состоящей из плоскостей А и U, переводит точку Х в точку X' единственной прямой, проходящей через точку Х и пересекающей плоскости А и U, которая является четвертой гармонической для точки Х и точки пересечения упомянутой прямой А с плоскостями А и U.
В неевклидовых пространствах, являющихся метризованными проективными, образами симметрии являются также m-мерные плоскости, при m = 1 прямые линии образующие вместе с плоскостями полярными относительно абсолютов m-пары.
При рассмотрении вещественных и эрмитовых неевклидовых пространств с простыми группами движений я всегда находил образы симметрии этих пространств. Особенно просто это в случае пространст с компактными группами движений, так как инволютивные движения, определяющие образы симметрии этих пространств, определяют также некомпактные группы с той же комплексной формой, что и компактная простая группа Ли. Замечу, что диаграммы Сатаке для некомпактных простых групп Ли первоначально применялись для изучения симметрических римановых пространств с некомпактными простыми группами движений. Эти симметрические пространства допускают интерпретации в виде многообразий образов симметрии неевклидовых пространств с компактными группами движений.
Образами симметрии неевклидовых пространств кроме точек и m- мерых плоскостей являются паратактические конгруенции и n-цепи. Паратактические конгруенции имеют место в (2n + 1)-мерных вещественных эллиптических и комплексных эрмитовых эллиптических пространствах, они состоят из заполняющих все пространство паратактичных прямых, т.е. прямых с равными стационарными расстояниями. Симметриями относительно этих конгруенций в случае вественных пространств являются сдвиги на полупрямую вдоль прямых конгруенции, а в случае комплексных пространст - переходы от точек прямых линий конгруенции к диаметрально противоположным точкам сфер изометричным этим линиям.
Нормаьные n-цепи имеют место в n-мерных комплексных и кватернионных эрмитовых эллиптических пространствах. Эти образы состоят из точек с соответственно вещественными или комплексными координатами или являются фигурами, получяемыми из этих образов движениями пространства. Симметрии относительно нормальных n-цепей определяются переходами от комплексных координат к комплексно сопряженным и от кватернионных координат вида a+bi+cj+dk к координатам вида a+bi-cj-dk. Нормальные n-цепи изометричны, соответственно, n-мерным вещественному эллиптическому и комплексному эрмитову эллиптическому пространствам.
В проективных просранствах имеются также образы косимметрии - гиперквадрики и линейные комплексы прямых, симметриями относительно которых являются полярные преобразования относительно этих образов.
Две m-пары проективного пространства в основном случае обладают m + 1 директрисами - прямыми пересекающими все четыре плоскости m- пар. Директрисы являются геометрическими ковариантами двух m-пар, а двойные отношения точек их пересечения с плоскостями m-пар - числовыми инвариантами n-пар.
Общие перпендикуляры двух m-мерных плоскостей являются директрисами этих плоскостей и их полярных плоскостей, а стационарные расстояния двух m-мерных плоскостей определяются числовыми инвариантами соответственны m-пар.
(adsbygoogle = window.adsbygoogle || []).push({});
