Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд
Шрифт:
Интервал:
Закладка:
Если рассмотреть проективное пространство, точки которого представляются векторами, направленными по радиусам гиперсфер, мы получим проективные модели неевклидовых пространств. В этих моделях эллиптическое пространство изображается полным проективным пространством, а остальные неевклидовы пространства изображаются областями проективного пространства, ограниченными гиперквадриками (х,х)=0, называемыми абсолютами неевклидовых пространств. Абсолют имеется и в эллиптическом пространстве, но в этом случае он является мнимой гиперквадрикой.
Расстояние между двумя точками А и В неевклидова пространства в проективной модели может быть выражено через двойное отношение этих точек и двух точек пересечения прямой AB с абсолютом. Прямые линии и m-мерные плоскости неевклидовых пространств в проективных моделях совпадают с прямыми и плоскостями проективного пространства, движения неевклидовых пространств в этих моделях совпадают с проективными преобразованиями, переводящими в себя абсолюты.
Конформным пространством размерности n называется n-мерное евклидово пространство, дополненное одной бесконечно удаленной точкой, причем прямые линии и m-мерные плоскости считаются окружностями и m-мерными сферами, проходящими через бесконечно удаленную точку. Псевдоконформным пространством размерности n и индекся k называется псевдоевклидово пространство той же размерности и того же индекса, дополненное одной бесконечно удаленной точкой и идеальными точками, причем прямые линии и m-мерные плоскости считаются окружностями и m-мерными сферами, проходящими через бесконечно удаленную точку, а идеальные точки рассматриваются как точки гиперсферы нулевого радиуса с центром в бесконечно удаленной точке.
Преобразования конформного и псевдоконформных пространств, сохраняющие углы между кривыми линиями, называются конформными преобразованиями. Конформные преобразования n-мерных конформного и псевдоконформных пространст, при n >2 переводят окружности этих пространств в окружности. При n=2 преобразования конформной и псевдоконформной плоскостей, переводящие окружности этих плоскостей в окружности, называются круговыми преобразованиями и являются частными случаями конформных преобразований.
Проектируя гиперсферу мнимого радиуса в псевдоевклидовом пространстве индекса 1 из ее центра на касательную гиперплоскость к ней, мы получим модель гиперболического пространства в шаре евклидива пространства, в которой прямые линии гиперболического пространства изображаются диаметрами и хордами шара, а параллели Лобачевского- хордами, имеющими один общий конец. Эта модель по существу совпадает с проективной моделью.
Проектируя ту же гиперсферу из одной ее точки на касательную гиперплоскость в диаметрально противоположной точке, мы получим другую модель гиперболического пространства в шаре евклидова пространства. В этой модели прямые линии гиперболического пространства изображаются диаметрами шара и дугами окружностей ортогональных к гиперсфере, ограничивающей шар. В этой проекции углы между линиями изображаются в натуральную величину. Эта модель является конформной моделью, а определяющая ее проекция - аналог стериографической проекции.
Применяя аналогичные проекции к гиперсферам, определяющим другие неевклидовы пространства, мы получим конформные модели этих пространств. Эти модели можно рассматривать как модели конформного и псевдоконформных пространств.
Симплектическим пространством размерности 2n-1 называется проективное пространство той же размерности, в котором задана кососимметрическая билинейная форма (a,b) = - (b,a). Прямые линии АВ, определяемые точками А и В, представляемыми векторами а и b, для которых (a,b) = 0, называются нуль -прямыми, они образуют линейный комплекс прямых. Проективные преобразования, переводящие в себя этот линейный комплекс, называются симплектическими преобразованиями.
Первоначально эти преобразования назывались преобразованиями линейного комплекса, а группа этих преобразований называлась комплекс- группой (Komplex-Gruppe). Когда Герман Вейль переехал из Германии в США и стал называть комлекс - группу complex group, он увидел, что это неудобно, так как эти же слова означают "комплексная группа". Поэтому он предложил называть эту группу симплектической, переведя латинское слово complexus - "сложный" греческим словом symplektikos. Преобразования и пространство также стали называть симплектическими.
Симплектическим пространством размерности 2n называется аффинное пространство той же размерности, в котором определено кососимметрическое скалярное произведение векторов (a,b) = -(b,a).
Топологическое пространство, каждая точка которого обладает окрестностью гомеоморфной n-мерному евклидову пространству, называется n-мерным многообразием. В каждой такой окрестности можно ввести координаты, определяемые координатами в евклидовом пространстве.
В том случае, когда в каждом пересечении таких окрестностей переход от одной системы координат к другой задается дифференцируемыми или аналитическими функциями, многообразие называется, соответственно, дифференцируемым или аналитическим.
В каждой точке дифференцируемого многообразия можно определить касательное линейное пространство. Координаты векторов этого пространства являются дифференциалами координат точек многообразия.
Если в касательном пространстве каждой точки n-мерного дифференцируемого многообразия определено скалярное произведение n- мерного евклидова пространства или n-мерного пседоевклидова пространства индекса k, мы получим, соответственно, n-мерное риманово пространство или псевдориманово пространство индекса k. В римановых и псевдоримановых пространствах можно определить длину линии, угол между пересекающимися линиями, геодезические (кратчайшие) линии и площадь участка двумерной поверхности.
Если из точки А риманова пространства выходят геодезические линии АВ и АС, и углы геодезического треугольника АВС при его вершинах обозначены теми же буквами A, B, C, то предел отношения разности А+В+С-п, где углы А,В,С измерены в радианной мере, к площади треугольника АВС при стремлении точек В и С к А называется секционной кривизной риманова пространства в точке А в данном двумерном направлении.
Эллиптическое и гиперболическое пространства являются частными случаями риманова пространства. Так как площадь всякого прямолинейного треугольника АВС в эллиптическом пространстве, получаемом из гиперсферы радиуса r, равна r (A+B+C-п), эллиптическое пространство является римановым пространством постоянной положительной кривизны 1/r2. Taк как площадь всякого прямолинейного треугольника АВС в гиперболическом пространстве, получаемом из гиперсферы мнимого радиуса r, равна r (A+B+C-pi),, гиперболическое пространство является римановым пространством постоянной отрицательной кривизны -1/q2.
(adsbygoogle = window.adsbygoogle || []).push({});