- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд
Шрифт:
Интервал:
Закладка:
Добавлю к выводам Тумера следующее. Имя "Аполлоний" означает "посвященный богу Аполлону". В предисловии ко II книге Аполлоний упоминает своего взрослого сына, которого также звали Аполлонием. из того, что имя Аполлоний было традиционным в семье ученого, можно сделать вывод, что эта семья происходит от жрецов бога Аполлона.
Предисловия к I и II книгам адресованы Евдему, с которым Аполлоний обсуждал в Пергаме план "Конических сечений". Аполлоний упоминает ученика Евдема Филонида, которого он рекомендовал Евдему в Эфесе. Отсюда и из того, что Аполлоний посылал Евдему первые кнги "Конических сечений"можно сделать вывод, что Апполоний, как и Филонид был учеником Евдема в Эфесе. Филонид впоследствии стал известным геометром и философом-эпикурейцем, работавшим при дворе Селевкидских царей, а Аполлоний после учебы у Евдема поехал в Александрию, где стал великим геометром.
До Аполлония конические сечения рассматривались только как сечения прямого кругового конуса плоскостями перпендикулярными одной из прямолинейных образующих поверхности этого конуса. Поэтому параболу называли "сечением прямоугольного конуса", эллипс - "сечение остроугольного конуса", а гиперболу, под которой имели в виду только одну ее ветвь, - "сечением тупоугольного конуса".
Аполлоний рассматривал конические сечения как сечения поверхностей не только прямых, но и наклонных круговых конусов произвольными плоскостями, не проходящими через их вершины, и рассматривал также продолжения поверхностей конусов по другую сторону их вершин. При этом старые названия теряли смысл, и Аполлоний предложил новые названия конических сечений, применяемые и в настоящее время. Гиперболой Аполлоний, как и его предшественники, называл одну ее ветвь, а обе ветви гиперболы он называл "противоположными гиперболами".
Названия Аполлония "парабола", "эллипс" и "гипербола", означающее, соответственно, "приложение", "недостсток "и "избыток", были связаны с уравнениями конических сечений. Уравнения Аполлония этих сечений имели тот же вид, что и у его предшественников, но до Аполлония эти уравнения записывались только в прямоугольных координатах, осью абсцисс которых служила ось симметрии сечения, а Аполлоний записывал их как в прямоугольных, так и в косоугольных координатах, осью абсцисс которых служил произвольный диаметр сечения, а осью ординат - касательная к сечению в конце этого диаметра.
Аполлоний определял диаметр конического сечения как такую прямую, что при косом отражении от нее сечение переходит в себя. Это отражение является частным случаем аффинного преобразования, поэтому в "Конических сечениях" доказано много теорем аффинной геометрии. Из того, что конические сечения являются плоскими сечениями одного и того же кругового конуса, следует, что их можно получить центральным проектированием окружности круга и, значит их можно получить из окружности проективным преобразованием. Поэтому в "Конических сечениях" доказано много теорем проективной геометрии. Так как инверсия относительно окружности круга является частным случаем конформного преобразования, в "Коническх сечениях" доказано несколько теорем конформной геометрии.
Результаты первых 4 книг "Конических сечений" Аполлония являются обобщениями результатов "Начал конических сечений" Евклида, также состоящих из 4 книг. Следующие книги труда Аполлония содержат новые результаты не имеющие аналогов в работах его предшественников. Особенна важна V книга, в которой изложены важные теоремы дифференциальной геометрии.В этой книге определены нормали к коническим сечениям и эволюты этих сечений, т.е. огибающие семейств нормалей. Аполлоний приводит пропорции равносильные уравнениям этих эволют. В Конических сечениях не приводится вывод этих пропорций, который невозможен без знания элементов дифференциального исчисления.
Из остальных сочинений Аполлония сохранилось только одно математическое сочинение в средневековом арабском переводе, но о других сочинениях Аполлония сохранились свидетельства античных авторов.
Клавдий Птолемей в "Алмагесте" цитирует астрономическое сочинение Аполлония, в котором изложена теория движения планет с помощью деферентов и эпициклов. Витрувий в "Десяти книгах об архитектуре" упоминал изобретенный Аполлонием астрономический инструмент, в котором используется стереографическая проекция, теория которой основана на 5-м предложении I книги "Конических сечений".
В трактате "Плоские геометрические места"Аполлоний рассматривал преобразования подобия, инверсии относительно окружностей кругов, и более сложные круговые преобразования. В трактате Аполлония "Касания" решаются задачи о проведении окружности, касающейся трех объектов, которые могут быть точками, прямыми и кругами. По-видимому, при решении наиболее сложных из этих задач Аполлоний пользовался инверсией относительни круга.
В сочинениях Аполлония "Вставки" и "Общий трактат" исложены решения геометрических задач равносильных алгебраическим уравнениям высших порядков.
Из остальных математических сочинений Аполлония упомяну "Сравнение додекаэдра и икосаэдра", комментарии Гипсикла к которому присоединены к 13 книгам "Начал" Eвклида в виде XIV книги.
Публикации МЦНМО
В 2003 г. в издательстве "Московский центр непрерывного математического образования"(МЦНМО) была опубликована книга "Геометрия групп Ли. Симметрические, параболические и периодические пространства", написанная мной и М.П.Замаховским.
В 2004 г. была опубликована моя книга "Аполлоний Пергский", являющаяся научной биографией великого геометра.
Находится в печати русский оригинал книги "Эли Картан", написанный М.А.Акивисом и мной, к которой добавлены мои русские переводы речи Э.Картана на праздновании его 70-летия, статьи Э.Картана, посвященной 100-летию со дня рождения Софуса Ли, и французского оригинала лекции Картана о влиянии Франции на развитие математики.
Готовится к печати мой полный русский перевод "Коническх сечений" Аполлония с подробными комментариями.
Устойчивость материальных структур
В главах о симплектической геометрии, в книгах по геометрии групп Ли я изложил результаты моих дальнейших размышлений об устойчивости материальных структур. Более подробно я изложил эти результаты в 2005 г. в журнале "Философские исследования".
Классическими устойчивыми материальными структурами являются механический и электромагнитный осцилляторы, внутреннее которых выражается одинаковыми дифференциальными уравнениями.
Идею о том, что атом водорода также можно рассматривать как электромагнитный осциллятор, я впервые опубликовал в 1958 г. в Ученых записках Коломенского пединститута. При этом роль конденсатора этого осциллятора играет "позитроний", состоящий из электрона, находящегося вне протона, и из позитрона, находящегося внутри протона, а роль катушки самоиндукции играет нейтрон, входящий в состав протона.
(adsbygoogle = window.adsbygoogle || []).push({});
