Категории
Самые читаемые
Лучшие книги » Документальные книги » Биографии и Мемуары » Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд

Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд

Читать онлайн Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 63 64 65 66 67 68 69 70 71 ... 114
Перейти на страницу:

Aналогично определяется секционная кривизна в двумерном направлении в псевдоримановом пространстве.

Если в дифференцируемом многообразии для всяких двух бесконечно близких точек определено аффинное отображение касательных пространств в этих точках, многообразие называется пространством аффинной связности.

Если в римановом или псевдоримановом пространстве или в пространстве аффинной связности отражение от каждой точки по геодезическим линиям не изменяет расстояний между точками или сохраняет аффинную связность, пространство называется симметрическим пространством.

Геометрии вещественных евклидовых, псевдоевклидовых, неевклидовых, симметрических, римановых и псевдоримановых пространств посвящены многие главы моих книг 1955, 1966, 1969 и 1997 гг. При этом особое внимание я уделял интерпретациям неевклидовых пространств, так как считаю интерпретации "стереоскопическим зрением геометра", ибо свойства неевклидовых пространств, которые отличаются от свойст евклидова пространства и ускользают от нашего внимания в одних интерпретациях, хорошо видны в других интерпретациях.

Комплексные и кватернионные пространства

Комплексное квадратичное евклидово пространство определяется так же, как вещественное. Это же пространство является комплексной формой всех вещественных псевдоевклидовых пространств той же размерности. В случае комплексного и кватернионного эрмитовых евклидовых пространств скалярный квадрат (а,а) является вещественной положительно определенной эрмитовой формой, а в случае комплексного и кватернионного эрмитовых псевдоевклидовых пространств индекса k скалярный квадрат (а,а) является вещественной знаконеопределенной эрмитовой формой индекса k.

Расстояние между точками А и В эрмитова евклидова или псевдоевклидова пространства равно квадратному корню из скалярного квадрата (а,а) вектора а=АВ. Нетрудно проверить, что n-мерные комплексное и кватернионное эрмитовы евклидовы пространства изометричны, соответственно, 2n-мерному и 4n-мерному вещественным евклидовым пространствам, а комплексное и кватернионное эрмитовы псевдоевклидовы пространства индекса k изометричны, соответственно, 2n-мерному вещественному псевдоевклидову пространству индекса 2k и 4n-мерному вещественному псевдоевклидову пространству индекса 4k.

Движениями эрмитовых евклидовых и псевдоевклидовых пространств называются аффинные преобразования этих пространств, сохраняющие расстояния между точками.

Если а и b - два вектора комплексного или кватернионного эрмитова пространства, изображаемые в вещественных пространствах ортогональными векторами, то их скалярное произведение (a,b) равно ucos j, где u в случае комплексного пространства - мнимая единица i, a в случае кватернионного пространства - кватернион bi +cj +dk единичного модуля, а j называется углом голоморфности. Угол j равен 0, когда векторы а и b принадлежат одной прямой линии, и равен п/2, когдя эти векторы принадлежат одной нормальной n-цепи, т.е. множеству точек с вещественными координатами или тому, что получается из этого множества точек при движении пространства. Двумерные площадки, для которых j=0, называются голоморфными, а двумерные площадки, для которых j=n/2, называются антиголоморфными.

Аналогично, угол голоморфии и голоморфные и антиголоморфные двумерные площадки определяются в комплексных и кватернионных эрмитовых псевдоевклидовых пространствах.

Точки n-мерных комплексного и кватернионного эрмитовых эллиптических пространств можно представить прямыми линиями (n + 1)- мерных эрмитовых евлидовых пространств над полем С или телом Н, проходящими через одну точку, причем расстояние d между точками равно произведению угла между прямыми на число r, связанное с векторами а и b, направленными по прямым, представляющим эти точки соотношениями R2 = (a,a) = (b,b). Поэтому cos2(d/r) = (a,b)(b,a)/(a,a)(b,b). Отсюда следует, что комплексное и кватернионное эрмитовы эллиптические пространства можно определить как проективное пространство над полем С или телом Н, в котором задано расстояние d между точками А и В, представленными векторами а и b, по указанному равенству. Правая часть этого равенства равна двойному отношению точек А и В и точек пересечения полярных гиперплоскостей этих точек относительно эрмитовой гиперквадрики (x,x)=0 с прямой АВ.

Аналогично определяются комплексные и кватернионные эрмитовы гиперболическое, псевдоэллиптические и псевдогипербопические пространства, но точки этих пространств изображаются точками одной из двух областей, на которые эрмитова гиперквадрика (x,x)=0 делит проективное пространство.

Эрмитова гиперквадрика (x,x)=0, мнимая в случае эллиптических пространств, называется абсолютом пространства. В случае псевдоэллиптических пространств, указанное двойное отношение, как и в случае эллиптических пространств, равно cos2(d/r). В случае гиперболических и псевдогиперболических пространств это двойное отношение равно ch2(d/q), где q2 =(a,a) = (b,b).

Движениями эрмитовых неевклидовых пространств называются проективные преобразования этих пространств, переводящие в себя их абсолюты.

Числа 1/r2 и -1/q2 называются кривизнaми комплексных и кватернионных эрмитовых неевклидовых пространств.

Комплексные и кватернионные эрмитовы эллиптическое и гиперболическое пространства n измерений являются 2n-мерными и 4n- мерными римановыми пространствами, а n-мерные комплексные и кватернионные эрмитовы псевдоэллиптические и псевдогиперболические пространства индекса k изометричны 2n-мерным псевдоримановым пространствам индекса 2k и 4n-мерным псевдоримановым пространствам индекса 4k.

Прямые линии комплексного и кватернионного эрмитовых эллиптических пространств кривизны 1/r2 изометричны, соответственно, сфере радиуса r/2 в 3-мерном евклидовом пространстве и гиперсфере того же радиуса в 5-мерном евклидовом пространстве. Прямые линии остальных комплексных и кватернионных эрмитовых неевклидовых пространств также изометричны сферам 3-мерных пространств и гиперсферам 5-мерных пространств.

В комплексных и кватернионных эрмитовых эллиптических пространствах, так же, как в эрмитовых евклидовых пространствах, можно определить угол голоморфии j двумерной площадки и голоморфные и антиголоморфные двумерные площадки.

Секционная кривизна 2n-мерного и 4n-мерного римановых пространств изометричных n-мерным комплексному и кватернионному эрмитовым эллиптическим пространствам в 2-мерных направлениях равна K=(1+3cos j)/r2, где j - угол голоморфности 2-мерной площадки в этом направлении, К=1/r2 в антиголоморфных площадках и К=4/r2 в голоморфных площадках. Поэтому римановы пространства изометричные комплексным и кватернионным эрмитовым эллиптическим пространствам называются пространствами постоянной голоморфной секционной кривизны. В этих пространствах можно определить также формулы тригонометрии, которые связывают длины сторон a, b, c геодезических треугольников, их углы А, В, С и углы голоморфии в их вершинах.

(adsbygoogle = window.adsbygoogle || []).push({});
1 ... 63 64 65 66 67 68 69 70 71 ... 114
Перейти на страницу:
На этой странице вы можете бесплатно скачать Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд торрент бесплатно.
Комментарии