- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд
Шрифт:
Интервал:
Закладка:
Секционная кривизна 2n-мерного и 4n-мерного римановых пространств изометричных n-мерным комплексному и кватернионному эрмитовым эллиптическим пространствам в 2-мерных направлениях равна K=(1+3cos j)/r2, где j - угол голоморфности 2-мерной площадки в этом направлении, К=1/r2 в антиголоморфных площадках и К=4/r2 в голоморфных площадках. Поэтому римановы пространства изометричные комплексным и кватернионным эрмитовым эллиптическим пространствам называются пространствами постоянной голоморфной секционной кривизны. В этих пространствах можно определить также формулы тригонометрии, которые связывают длины сторон a, b, c геодезических треугольников, их углы А, В, С и углы голоморфии в их вершинах.
Угол голоморфии, голоморфные и антиголоморфные площадки, выражение секционной кривизны в 2-мерном направлении через угол голоморфии и формулы тригонометрии можно определить и в других комплексных и кватернионных эрмитовых неевклидовых пространствах. Римановы и псевдоримановы пространства изометричные этим комплексным и кватернионным пространствам также называются пространствами постоянной голоморфной секционной кривизны.
Комплексные и кватернионные эрмитовы эллиптические и гиперболические пространства допускают интерпретации в вещественных 2n-мерном и 4n-мерном евклидовых пространствах. Гиперболические эрмитовы пространства допускают интерпретацию в шарах евклидовых пространств, причем прямые линии эрмитовых пространств изображаются сечениями шаров, соответственно, 2-мерными и 4-мерными плоскостями, а геодезические линии римановых пространств, изометричных гиперболическим пространствам, изображаются диаметрами этих сечений и дугами окружностей ортогональных гиперсферам, ограничивающим шары. Эллиптические эрмитовы пространства допускают интерпретации в полных евклидовых пространствах, причем прямые линии эрмитовых пространств изображаются, соответственно, 2-мерными и 4-мерными плоскостями, пересекающимися с некоторой гиперсферой, а геодезические линии римановых пространств, изометричных эллиптическим пространствам, изображаются прямыми линиями и окружностями, пересекающими эту гиперсферу в парах диаметрально противоположных точек.
Аналогичные эрмитовы неевклидовы пространства определяются над алгеброй C' двойных чисел и алгеброй H' псевдокватернионов. В отличие от пространств над полем С и телом Н в случаях алгебр C' и H' имеется только один вид эрмитовых неевклидовых пространств - эллиптические пространства ; n-мерные пространства этого типа изометричны 2n-мерным псевдоримановым пространствам индекса n и 4n-мерным псевдоримановым пространствам индекса 2n.
Над алгеброй С' двойных чисел можно определить такие же квадратичные пространства, как и над полем R, причем каждое из этих пространств над алгеброй C' допускает интерпретацию в виде пары одноименных вещественных пространств.
Геометрии пространств над полем C, телом H и алгебрами C' и H' посвящены 6 глава в моей книге 1955 г. и несколько глав в моей книге 1997 г. В этих главах описаны многие мои результаты и результаты моих учеников.
Группы Ли
Если группа явлается топологическим пространством и групповые операции являются гомеоморфными отображениями пространства на себя, такая группа называется топологической группой. Если топологическая группа является аналитическим многообразием, она называется группой Ли. В касательном пространстве в единице группы Ли определена операция коммутирования, ставящая в соответствие каждым двум векторам а и b их коммутатор [ab], причем выполняются условия [ab]=-[ba] и тождество Якоби [a[bc]]+[b[ca]]+[c[ab]]=0. Линейное пространство с такой операцией называется алгеброй Ли. Если из единицы е гроппы Ли выходит однопараметрическая подгруппа g(t), причем g(0)=e, g(t1+t2)=g(t1)g(t2), то за координаты вектора а алгебры Ли касательного к этой подгруппе можно принять производные координат элемента g(t) по t при t=0. Если подгруппам g(s) и h(t) соответствуют векторы а и b, то сумма a+b соответствует произведению g(s)h(t), a коммутатор [ab] cooтветствует произведению g(s)h(t)g(-s)h(-t).
Две группы Ли, алгебры Ли которых совпадают, называются локально изоморфными и алгебра Ли определяет группу Ли с точностью до локального изоморфизма.
Группа Ли называется простой, если она не содержит инвариантных подгрупп меньшей размерности. Группа Ли называется полупростой, если она не содержит разрешимых инвариантных подгрипп.
Алгебра Ли полупростой группы Ли изоморфна прямой сумме алгебр Ли нескольких простых групп Ли.
Всякая некоммутативная простая группа Ли полупроста.
Так как группа Ли является аналитическим многообразием, всякой вещественной группе Ли G соответствует комплексная группа Ли CG, являющаяся ее комплексной формой.
Топологическое пространство называется компактным, если из любого его покрытия открытыми множествами можно выделить конечное покрытие. Среди вещественных групп Ли с общей комплексной формой имеется одна (определенная с точностью до локального изоморфизма) компактная и несколько некомпактных групп. Комплексные группы Ли всегда некомпактны.
В алгебре Ли любой группы Ли можно определить квадратичную форму Ф Киллинга-Картана. Условием полупростоты группы Ли является невырожденность формы Ф. В случае компактных полупростых групп Ли форма Ф является отрицательно определенной, в случае некомпактных полупростых групп Ли форма Ф - знаконеопределенная. Если в последнем случае форма Ф приводится к алгебраической сумме N отрицательных и Р положительных квадратов, разность Р-N называется характером некомпактной полупростой группы. Форма -Ф определяет инвариантную метрику Картана в полупростой группе Ли, риманову в случае компактных групп и псевдориманову индекса Р в случае некомпактных групп. В любых группах Ли однопараметрические подгруппы этих групп и их классы смежности определяют инвариантную аффинную связность.
Элемент а алгебры Ли полупростой группы Ли называется регулярным, если множество элементов b этой алгебры, для которых [ab]=0, имеют наименьшую размерность. Эта наименьшая размерность называется рангом полупростой группы Ли. Указанное подмножество элементов алгебры Ли полупростой группы Ли, называется подалгеброй Картана этой алгебры, а коммутативная подгруппа группы Ли, соответствующая этой подалгебре, называется подгруппой Картана.
Если h - элемент подалгебры Картана Н алгебры Ли полупростой группы Ли G, а g - произвольный элемент этой алебры Ли, то коммутатор [hg] является векторной линейной функцией элемента g и может быть записан в виде Аg, где А - линейный оператор. Для всех элементов h соответственные операторы А имеют одни и те же собственные векторы, а собственные числа операторов А, соответствующих одному и тому же собственному вектору, являются линейными формами j =uh на линейном пространстве Н, где - u ковектор, определяющий линейную форму. Формы j называются корневыми формами группы G. Так как ковекторы u в случае евклидовой или псевдоевклидовой метрики в подалгебре Н, порождаемой метрикой Картана в группе G, можно рассматривать как векторы, то ковекторы u называют корневыми векторами группы G.
(adsbygoogle = window.adsbygoogle || []).push({});
