- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд
Шрифт:
Интервал:
Закладка:
Параболические образы
В пространствах, группы движений которых - простые группы Ли, я находил параболические образы, определяемые параболическими подгруппами группы движений пространтва, т.е. подгруппами, содержащими максимальную разрешимую подгруппу группы движений, называемую подгруппой А.Бореля. Всякая параболическая подгруппа определяется одним или несколькими простыми корневыми векторами группы Ли. В случае, когда параболическая подгруппа определяется одним простым корневым вектором, пораболический образ называется фундаментальным. Все параболические образы вещественны в случае расщепленных групп, все эти образы мнимы в случае компактных групп. Эти образы могут быть вещественными, мнимыми и комплексно сопряженными в случае некомпактных нерасщепленных групп.
Параболические образы изучались И.М.Гельфандом и его сотрудниками и Хариш-Чандрой в связи с теорией унитарных представлений некомпактных простых групп Ли.
Фундаментальные параболические образы связаны с фундаментальными линейными представлениями простых групп Ли, определенными Э.Картаном в 1913 г. Эти образы изучались Жаком Титсом, который называл их фундаментальными элементами.
Фундаментальными параболическими образами в случае n-мерного вещественного проективного пространства являются m-мерные плоскости (при m=0 точки, при m = 1 прямые линии, при m= n-1 - гиперплоскости).
Фундаментальными параболическими образами в случае 2n-мерных и (2n-1) -мерных вещественных неевклидовых пространств являются m-мерные плоские образующие абсолюта (при m=0 точки, при m = 1 прямолинейные образующие). Плоские образующие максимальной размерности абсолютов этих пространств (n-1) -мерны, эти плоские образующие составляют одно связное семейство в 2n-мерном пространстве и два связных семейства в (2n-1) -мерном пространстве. В последнем случае (n-2) -мерные плоские образующие - параболические образы не являющиеся фундаментальными. Плоские образующие максимальной размерности абсолютов вещественных неевклидовых пространств связаны со спинорными представлениями групп движений этих пространств.
Фундаментальными параболическими образами в случае (2n-1)- мерного вещественного симплектического пространства являются точки и m-мерные нуль-плоскости (при m = 1 нуль-прямые). Нуль-прямые вещественного симплектического пространства образуют абсолютный линейный комплекс этого пространства.
Фундаментальные параболические образы комплексных и кватернионных проективных и эрмитовых неевклидовых и симплектических пространств аналогичны параболическим образам вещественных пространств. Параболическими образами конформных и псевдоконформных пространств являются их точки и m-мерные изотропные плоскости, при m = 1 - изотропные прямые.
Фундаментальные параболические образы пространств, фундаментальными грппами которых являются простые группы Ли, изображаются точками диаграмм Дынкина и Сатаке. В последнем случяе черные точки диаграмм Сатаке изображают вещественные образы, белые точки - мнимые образы, а белые точки, соединенные дугами с двумя стрелками, - комплексно сопряженные образы.
Со всяким параболическим образом связано представление фундаментальной группы пространства в виде прямой суммы 2k+1 линейных подпространств J + K+... + L. Подпространства J и L этой прямой суммы являются элластичными алгебрами, определенными И.Л.Кантором. В случае k =1 aлгебры J и L являются йордановыми алгебрами М.А.Джавадов и И.И.Колокольцева доказали, что спонорные предстаавлениягрупп движений неевклидобых пространств изображаются дробно-линейными преобразованиями этих йордановых алгебр.
Геометрические интерпретации, связанные с изоморфизмами простых и полупростых групп Ли
Упомянутые выше изоморфизмы простых и полупростых групп Ли ранга 1, 2 и3 определяют изоморфизмы вещественных простых и полупростых групп Ли с теми же рангами. С этими изоморфизмами вещественных групп Ли связаны геометрические интерпретации однородных пространств, фундаментальными группами которых являются эти группы Ли.
1) С локальным изоморфизмом компактных групп классов A1 и B1 связана изометричность комплексной эрмитовой эллиптической прямой линии кривизны 1/r2 и сферы радиуса r/2 3-мерного евклидова пространства.
С локальным изоморфизмом расщепленных групп классов A1 и B1 связана интерпретация О.Гессе плоскости Лобачевского на вещественной проективной прямой, при которой точки проективной прямой изображаются точками абсолюта плоскости Лобачевского, а пара точек проективной прямой - прямыми линиями плоскости Лобачевского.
С локальным изоморфизмом компактной группы класса D2 и прямого произведения двух компактнх групп класса А связана интерпретация А.П.Котельникова многообразия прямых линий 3-мерного вещественного эллиптического пространства на сфере двойного 3-мерного евклидова пространства, при которой пара полярно сопряженных прямых линий эллиптического пространства изображаются 4 точками пересечения сферы двойного пространства с диаметральными прямыми этой сферы.
С локальным изоморфизмом некомпактной группы класса D2 и комплексной группы класса A1 связана интерпретация А.П.Котельникова многообразия прямых линий 3-мерного пространства Лобачевского на сфере 3-мерного комплексного евклидова пространства, при которой прямые линии пространства Лобачевского изображаются парами диаметрально противоположных точек сферы комплексного пространства.
С локальным изоморфизмом некомпактной вещественной группы класса D2 и прямого произведения некомпактной и расщепленной групп класса A1 связана интерпретация Л.В.Румянцевой кватернионной симплектической прямой линии на паре комплексных эрмитовых прямых линий, эллиптической и гиперболической, при которой точки кватернионной прямой линии изображаются парами точек комплексных прямых линий, по одной точке на каждой линии.
С локальным изоморфизмом компактных групп классов B2 и C2 связана изометричность кватернионной эрмитовой эллиптической прямой линии кривизны 1/r2 и сферы радиуса r/2 5-мерного евклидова пространства.
С локальным изоморфизмом расщепленных групп классов B2 и C2 связана интерпретация 4-мерного вещественного псевдоэллиптического пространства индекса 2 в 3-мерном вещественном симплектическом пространстве, при которой 2-мерные плоские образующие абсолюта псевдоэллиптического пространства изображаются нуль-прямыми симплектического пространства.
С локальным изоморфизмом компактных групп классов A3 и D3 cвязана интерпретация Н.Д.Пецко 3-мерного комплексного эрмитова эллиптического пространства в 5-мерном вещественном эллиптическом пространстве при которой точки каждого из этих пространств изображаются паратактическими конгруэнциями прямых линий другого пространства.
(adsbygoogle = window.adsbygoogle || []).push({});
