- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд
Шрифт:
Интервал:
Закладка:
Продолжая исследования Фрейденталя, Ж.Титс доказал, что некомпактная вещественная простая группа Ли с характером -20 является группой движений октонионной эрмитовой гиперболической плоскости. Впоследствии я доказал, что расщепленная простая группа Ли этого класса является группой движений псевдооктонионной эрмитовой эллиптической плоскости и построил аналогичные геометрические интерпретации для всех некомпактных вещественных групп Ли классов Е6, Е7 и Е8. Геометрические интерпретации всех вещественных особых простых групп Ли рангов 4, 6, 7 и 8 имеют следующий вид.
Компактная простая группа Ли класса F4 локально изоморфна группе движений октонионной эрмитовой эллиптической плоскости.
Некомпактная вещественная простая группа Ли класса F4 с характером -20 локально изоморфна группе движений октонионной эрмитовой гиперболической плоскости.
Расщепленная простая группа Ли класса F4 локально изоморфна группе движений псевдооктонионной эрмитовой эллиптической плоскости.
Компактная простая группа Ли класса Е6 локально изоморфна группе двиэжений эрмитовой эллиптической плоскости над тензорным произведением алгебр C и О.
Некомпактная вещественная простая группа Ли класса Е6 с характером -14 локально изоморфна группе движений эрмитовой гиперболической плоскости над тензорным произведением алгебр C и О.
Некомпактная вещественная простая группа Ли класса Е6 с характером -26 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр C' и О и группе проективных преобразований октонионной проективной плоскости.
Некомпактная вещественная простая группа Ли класса Е6 с характером 2 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр C и О'.
Расщепленная простая группа Ли класса Е6 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр C' и О' и группе проективных преобразований псевдооктонионной проективной плоскости.
Компактная простая группа Ли класса Е7 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр H и О.
Некомпактная вещественная простая группа Ли класса Е7, с характером -5 локально изоморфна группам движений эрмитовой гиперболической плоскости над тензорным произведением алгебр H и О и эрмитовой эллиптической плоскости над тензорным произведением алгебр H' и О.
Некомпактная вещественная простая группа Ли класса Е7 с характером -25 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр H и О'.
Расщепленная простая группа Ли класса Е7 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением алгебр H' и О'.
Компактная простая группа Ли класса Е8 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением двух алгебр О.
Некомпактная вещественная простая группа Ли класса Е8 с характером -24 локально изоморфна группам движений эрмитовой гиперболической плоскости над тензорным произведением двух алгебр О и эрмитовой эллиптической плоскости над тензорным произведением алгебр О и О'.
Расщепленная простая группа Ли класса Е8 локально изоморфна группе движений эрмитовой эллиптической плоскости над тензорным произведением двух алгебр О'.
Проективные и неевклидовы пространства над неассоциативными алгебрами не могут иметь размерность больше 2, так как в этом случае теорема Дезарга равносильная ассоциативности алгебры, над которой построено пространство, является следствием аксиом сочетания проективной геометрии.
Вскоре после того как я прочел цикл лекций о геометриях групп Ли в Утрехте Фрейденталь написал мне, что, обсуждая мои лекции с Титсом они пришли к выводу, что мои геометрические интерпретации особых простых групп Ли невозможны, так как размерностей линейных представлений простых групп Ли классов F4, Е6, Е7 и Е8, определяемых моими интерпретациями, нет в списке линейных представлений этих групп, утановленном Картаном в 1913 г.
Я ответил Фрейденталю, что представления этих групп, определяемые моими интерпретациями, не являются линейными.
Выше я писал, что точки октонионной проективной плоскости можно
определять тремя октонионными координатами, принадлежащими к одному ассоциативному подтелу тела О, и поэтому точки октонионной проективной плоскости можно определять тремя октонионными координатами, находящимися в одном ассоциативном подтеле тела О и заданными с точностью до правого множителя, являющегося элементом того же подтела. Поэтому при проективных преобразованиях октонионной плоскости три координаты xi точек этой плоскости подвергаются некоторому автоморфизму тела О, который переводит их в три октониона f(X|), также принадлежащие к одному ассоциативному подтелу тела О, эти три октониона подвергаются линейному преобразованию с помощью октонионной матрицы 3-го порядка, полученной "проектированием" матрицы группы, представляющей группу проективных преобразований октонионной плоскости, на то подтело, к которому принадлежат октонионы f(Xi).
Движения октонионной эрмитовой эллиптической определяются таким же образом, но матрица третьего преобразующая октонионы f(xi), получается "проектированием" октонионной матрицы 3-го порядка.
Координаты точек 2-мерных эрмитовых эллиптических и гиперболических плоскостей, группы движений которых являются особыми простыми группами Ли рангов 4, 6, 7 и 8, а также сами движения этих групп, определяются аналогично.
Образы симметрии компактных особых простых групп Ли имеют следующий вид.
В 6-мерном G-эллиптическом пространстве имется только один вид образов симметрии - точки.
В октонионной эрмитовой эллиптической плскости имеются два вида образов симметрии - точки и нормальные кватернионные 2-цепи, определяемые аналогично комплексным нормальным n-цепям кватернионного пространства.
В эрмитовой эллиптической плоскости над тензорным произведением алгебр C и О имеются четыре вида образов симметрии - точки, октонионные нормальные 2-цепи, комплексно -кватернионные 2-цепи и нормальные 2-бицепи. В этом случае нормальные 2-цепи определяются переходами от поля C к полю R и от тела О к телу H в одном из сомножителей тензорного произведения, нормальные 2-бицепи определяются такими же переходами в обоих сомножителях тензорного произведения.
плоскости порядка, унитарной
В эрмитовой эллиптической плоскости над тензорным произведением алгебр H и О имеются также четыре вида образов симметрии - точки, комплексно-октонионные нормальные 2-цепи, кватернионно- кватернионные 2-цепи и нормальные 2-бицепи. В этом случае нормальные 2-цепи определяются переходами от тела H к полю C и от тела О к телу H в одном из сомножителей тензорного произведения, нормальные 2-бицепи
(adsbygoogle = window.adsbygoogle || []).push({});
