Категории
Самые читаемые
Лучшие книги » Документальные книги » Биографии и Мемуары » Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд

Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд

Читать онлайн Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 72 73 74 75 76 77 78 79 80 ... 114
Перейти на страницу:

Геометрия квазипростых и r-квазипростых групп Ли

Выше я упоминал о связи междо некомпактными простыми группами Ли и симметрическими пространствами с компактной простой группой движений. Эта связь, установленная Картаном в 1929 г., состоит в следующем: если s - инволютивный элемент компактной группы G движений, определяющий симметрическое пространство, то переход от элемента g группы G к элементу sgs является инволютивным автоморфизмом группы G. Этот автоморфизм порождает инволютивный автоморфизм в алгебре Ли А группы G. Этот автоморфизм алгебры Ли А определяет ее представление в виде прямой суммы двух подпространств A=B+C, где пространства B и C таковы, что при этом автоморфизме все векторы подпространства В инвариантны, а все векторы подпространства C умножаются на -1.

Если мы умножим все векторы подпространства C на мнимую единицу j, мы получим алгебру Ли А' некомпактной группы G', имеющей ту же комплексную форму, что и группа G. Алгорит перехода от группы G к группе G' я называю "Картановым алгоритмом". И.М.Гельфанд называет группы G и G' "двойственными по Картану".

Если мы умножим все векторы подпространства С не на мнимую единицу j, а на дуальную единицу e алгебры C0 дуальных чисел, мы получим алгебру Ли A0 новой группы Go, которую И.М.Гельфанд называет "тройственной по Картану" по отношению к группам G и G'.

Когда я читал в Утрехте лекцию об этих группах, Фрейденталь предложил называть эти группы "квазипростыми группами Ли." Поэтому я называю переход от группы G к группе G0 "квазикартановым алгоритмом".

Квазикартанов алгоритм может быть применен не только к компактным, но и к любым простым группам Ли. Его можно применять и несколько раз, и я называю группу Ли, полученную из простой группы Ли r-кратным применением квазикартанова алгоритма, "r-квазипростой группой Ли".

Понятие простоты, квазипростоты и r-квазипростоты имеют место и для алгебр. Ассоциативная алгебра называется простой, если она не содержит двусторонних идеалов. Как доказал Э.Картан, простыми ассоциативными алгебрами над полем R являются алгебры M(n), CM(n) и HM(n) вещественных, комплексных и кватернионных матриц n -го порядка. В частности, простыми алгебрами являются и сами алгебры C и H. Применяя Картанов алгоритм к алгебрам C и H мы получаем алгебры C' двойных чисел и H' псевдокватернионов. Применяя к этим алгебрам квазикартанов алгоритм, мы получим квазипростые алгебры C0 дуальных чисел и H0 полукватернионов.

Проста и альтернативная алгебра О октонионов. Применяя к ней Картанов алгоритм, мы получим простую альтернативную алгебру O' псевдооктонионов, а применяя к алгебре О квазикартанов алгоритм, мы получим квазипростую альтернативную алгебру O0 полуоктонионов.

Мое внимание к квазипростым алгебрам привлек И.М.Яглом еще в то время, когда я готовил докторскую диссертацию. Позднее он заинтересовал меня вырожденными неевклидовыми геометриями, группами движений которых являются квазипростые и r-квазипростые группы Ли.

Наиболее известными квазипростыми группами Ли являются группы движений евклидова и псевдоевклидовых пространств. Группа движений n- мерного вещественного евклидова пространства является тройственной по Картану по отношению к группам движений n-мерных вещественных эллиптического и гиперболического пространств. Группа движений n- мерного вещественного псевдоевклидова пространства индекса k является тройственной по Картану по отношению к группам движений n-мерных вещественных псевдоэллиптических пространств индексов k и k+1.

Если дополнить n-мерные евклидово и псевдоевклидовы пространства их бесконечно удаленными гиперплоскостями до проективного пространства, гиперсферы евклидова и псевдоевклидовых пространств высекают из этих гиперплоскостей мнимую и вещественную квадрики. Эти квадрики можно рассматривать как абсолюты (n-1)-мерных эллиптического и псевдоэллиптических пространств. Бесконечно удаленные гиперплоскости евклидова и псевдоевклидовых пространств вместе с квадриками, высекаемыми из них гиперсферами этих пространств, называются абсолютами евклидова и псевдоевклидовых пространств.

По принципу двойственности проективного пространства евклидову пространству и псевдоевклидовым пространствам вместе с их абсолютами соответствуют коевклидово пространство и копсевдоевклидовы пространства, т.е. пространства с проективными метриками, абсолютами которых являются мнимый и вещественные гиперконусы второго порядка с точечными вершинами. Расстояния между точками этих пространств, расположенными на прямых, не проходящих через вершину гиперконуса, измеряются как на эллиптических и гиперболических прямых. Расстояния между точками прямых, проходящих через вершину гиперконуса, измерятся как на евклидовых прямых. За расстояния между точками коевклидова и копсевдоевклидовых пространств можно принять в первом случае углы между пересекающимися гиперплоскостями евклидова и псевдоевклидовых пространств, а во втором случае - расстояния между параллельными гиперплоскостями этих пространств.

Евклидово и коевклидово пространства являются частными случаями квазиэллиптического пространства дефекта m. Это пространство также является пространством с проективной метрикой, абсолют которого состоит из мнимого гиперконуса с плоской вершиной размерности n-m-1 и мнимой квадрики в этой плоскости. Расстояния между точками, расположенными на прямых, не пересекающих вершинную плоскость гиперконуса, и на прямых, лежащих в этой вершинной плоскости, измеряются как на эллиптических прямых. Расстояния между точками прямых, пересекающих вершинную плоскость, измеряются как на евклидовых прямых. При m =0 это пространство евклидово, при m =n-1 это пространство коевклидово.

Заменяя в определении квазиэллиптического пространства мнимый гиперконус и мнимую квадрику, или одну из этих поверхностей, вещественными, мы получим квазипсевдоэллиптические пространства, частными случаями которых являтся псевдоевклидовы и копсевдоевклидовы пространства.

Группы движений квазиэллиптических и квазипсевдоэллиптических пространств являются квазипростыми группами тройственными по Картану по отношению к группам движений эллиптического и псевдоэллиптического пространств или по отношению к группам движений двух псевдоэллиптических пространств разных индексов.

Вершинные (n-m-1)-мерные плоскости гиперконусов абсолютов n-мерных квазиэллиптических и квазипсевдоэллиптических пространств являются (n-m-1)-мерными эллиптическими пространствами или содержат (n-m-1)-мерное псевдоэллиптическое пространство.

Заменяя эти пространства (n-m-1)-мерными квазиэллиптическими или квазипсевдоэллиптическими пространствами, мы получим n-мерные биквазиэллиптические и биквазипсевдоэллиптические пространства. Группы движений этих пространств являются биквазипростыми группами Ли.

(adsbygoogle = window.adsbygoogle || []).push({});
1 ... 72 73 74 75 76 77 78 79 80 ... 114
Перейти на страницу:
На этой странице вы можете бесплатно скачать Пространства, времена, симметрии. Воспоминания и мысли геометра - Борис Розенфельд торрент бесплатно.
Комментарии