- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев
Шрифт:
Интервал:
Закладка:
Ферма не оставил доказательства общего случая, но сохранились записи изящного доказательства для частного случая, для n = 4, гласящего, что уравнение x4 + у4 = z4 не имеет нетривиальных решений в целых числах.
Я не буду приводить этого доказательства, хотя оно и не очень сложное. Оно использует приемы делимости, что возвращает нас к нашей первой задаче (найти все пифагоровы тройки).
Итак, теорема Ферма: уравнение хn + уn= zn не имеет решений в натуральных числах. Давайте посмотрим, каким может быть число n.
Это число можно разложить на множители. Есть такая теорема, называется «Основная теорема арифметики», которая утверждает, что любое натуральное число можно единственным образом, с точностью до перестановки множителей, разложить в произведение простых чисел. Смотрим, делится ли n на 2. Делим, пока делится, получаем 2 в какой-то степени и оставшийся нечетный множитель. Если оставшийся множитель не простой, то мы раскладываем его дальше, пока не получим произведение простых чисел.
Например,
n = 2mn1n2 = 25 · 17 · 7 = 3808.
Почему процесс разложения на множители не может продолжаться до бесконечности? Каждый раз, когда мы раскладываем на множители, числа становятся всё меньше и меньше. Нельзя бесконечно долго уменьшать натуральное число. Это аксиома Архимеда, но для человека разумного это — очевидное утверждение.
Переименуем простые множители в p. Математики любят обозначать простые числа буквой p от английского «prime»:
n = 2mp1p2p3 ... pk.
Некоторые из множителей могут встречаться несколько раз. А может быть, у n есть какие-то другие множители, которые здесь не перечислены, и в результате оно одновременно равно какому-то другому произведению:
n = 2mp1p2p3 ... pk = q1q2q3 ... qk
Может ли такое быть, чтобы одно и то же число раскладывалось на простые множители «существенно по-разному» (несущественное отличие — например, 2 · 3 · 5 и 3 · 5 · 2)? Интуиция подсказывает, что нет, и интуиция права. Но доказать это аккуратно довольно сложно. Мы в это просто поверим и не будем проходить этой тернистой дорогой. Что же следует из единственности разложения на простые множители?
Есть два варианта. Либо у n есть хотя бы один нечетный простой делитель, то есть в записи:
n = 2mp1p2p3 ... pk
хотя бы одно p — нечетное. Второй вариант состоит в том, что ни одного нечетного числа нет. Поговорим сперва о втором варианте. Что можно сказать про n в этом случае? То, что n является степенью двойки. Если n = 2, мы получаем задачу про Пифагоровы треугольники, которую скоро решим в этой лекции. Если n ≠ 2, то оно представимо в виде 4 · k. Высшая степень двойки — это либо 4, либо 8 = 4 · 2, либо 16 = 4 · 4 и так далее. Получаем следующее уравнение:
x4k + y4k = z4k,
но, как известно,
x4k = (xk)4,
откуда получаем
(xk)4 + (yk)4 = (zk)4.
Если бы можно было решить это уравнение, то три натуральных числа хk, уk и zk образовали бы решение задачи Ферма x4+у4 = z4.
Но Ферма доказал, что такое уравнение не имеет решений в целых числах, строго больших нуля.
Поэтому случай теоремы Ферма для чисел n, являющихся какой-то степенью двойки, сводится к n = 2. В других случаях решений нет.
Вспомним, какой случай мы еще не рассмотрели: n содержит нечетный простой делитель p, n ≠ 1 (кстати, 1 тоже является степенью двойки), то есть n = pk. Тогда:
(xk)p + (yk)p = (zk)p.
Получается, что если у n есть простой нечетный делитель p, то несуществование решения уравнения Ферма с показателем n сводится к несуществованию решения уравнения степени p.
То есть теорема Ферма сводится к исследованию уравнения простой нечетной степени. И если мы знаем, что ни при каком простом нечетном n уравнение хn + уn = zn не имеет решения, то оно не имеет решения и ни при каком другом n ⩾ 3. А теперь — история вопроса.
Про уравнение второй степени было известно уже древним индусам. Уравнение третьей степени оказалось более сложным. Почти полное решение, которое потом довели до конца, было получено Леонардом Эйлером. В лекции 4 я расскажу, каким изящнейшим путем доказывается теорема несуществования для некоторого уравнения третьей степени (не связанного напрямую с теоремой Ферма), но сначала про пятую степень:
х5 + у5 = z5.
Неразрешимость уравнения пятой степени в целых числах была доказана в XIX веке. Потом стали увеличивать показатели и доказывать про седьмую, одиннадцатую, тринадцатую степени. Дошли примерно до сотни. Особо отличились женщина-математик Софи Жермен, а также Куммер, потративший на теорему Ферма добрую половину своей весьма долгой жизни (1810–1893).
При решении уравнения Ферма выделяют два разных случая: регулярный и специальный (нерегулярный).
Регулярный случай: ни одно из чисел x, y, z не делится на p. Специальный случай: одна из переменных делится на p, а две другие — нет. (Если две переменные делятся на p, то и третья переменная обязательно делится на p. Например, если x и y делятся на p,

