Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев
Шрифт:
Интервал:
Закладка:
2 · 3 + 1 — простое,
2 · 3 · 5 + 1 — простое,
2 · 3 · 5 · 7 + 1 — простое,
2 · 3 · 5 · 7 · 11 + 1 — простое,
2 · 3 · 5 · 7 · 11 · 13 + 1 — уже не простое (30031), так как оно делится на 59.
Рецепт не работает.
Мы знаем, что простые числа в натуральном ряду чисел встречаются в бесконечном количестве. А теперь вопрос, как они распределены? Можно ли тут какие-то закономерности установить? Насколько часто или редко они встречаются?
Рассмотрим такое произведение
1 · 2 · 3 · 4 · 5 · … · 100 = 100! (называемое «сто факториал»).
100 факториал — это произведение подряд идущих натуральных чисел от 1 до 100.
Это — огромное число, его невозможно себе даже представить, но все-таки где-то в натуральном ряду оно есть. Следующее за ним число 100! + 1, потом 100! + 2. Это число будет делиться на 2. Потому что 100! делится на 2, и 2 делится на 2. 100! + 3 делится на 3, 100! + 4 делится на 4 и на 2, 100! + 5 делится на 5.
И так до ста. 100! + 100 будет делиться на 100. Получается, что цепочка от 100! + 2 до 100! + 100 — из 99 натуральных идущих подряд чисел простых чисел в себе не содержит. Можно ли сконструировать то же самое, но для 1000 подряд идущих непростых чисел? Конечно. Берете 1001! то есть произведение всех чисел от 1 до 1001, прибавляете 2, 3, 4 и так далее до 1001. Вот вам 1000 подряд идущих чисел, среди которых нет простых. Значит, регулярности в проявлении простых чисел ожидать нельзя. Промежутки между соседними простыми числами могут быть сколь угодно большими. Можно ли сказать что-то про то, насколько маленькими они могут быть?
Слушатель: Единица — минимальный промежуток.
А.С.: Единица. Но она встречается только в самом начале, между 2 и 3. Потому что из двух соседних чисел одно обязательно четное, а значит — не простое (кроме случая 2 и 3). Получается, что минимальное расстояние между соседними простыми числами, начиная с числа 3, равно 2.
Вначале мы очень много видим этих «двоек» (то есть простых чисел, идущих через одно), потом они становятся всё реже и реже, и возникает вопрос: а кончатся ли эти «двойки» когда-нибудь? Будет ли момент натурального ряда, может быть, ужасно далеко от нас, когда появится последняя двойка соседних простых чисел, отличающихся на 2 единицы? Такие числа, кстати, называются близнецами: 29 и 31, 41 и 43, 71 и 73, 101 и 103. Будет ли момент, когда мы встретим последних близняшек, а между оставшимися простыми числами расстояние всегда будет не меньше трех (на самом деле четырех, потому что они заведомо оба нечетные)?
Это — нерешенная математическая проблема.
Я вам расскажу про одно маленькое «но», которое позволяет оптимистам утверждать о некотором прогрессе в решении этой проблемы. Чтобы вы сразу почувствовали, однако, насколько анекдотичен этот прогресс, выслушайте такую притчу.
В одной стране попытались доказать теорему: У каждого мужа должно быть не более трех жен. Долго не удавалось ее никак доказать. Наконец, дело сдвинулось с мертвой точки. Была доказана близкая к ней теорема: У каждого мужа должно быть не более трех миллионов жен. Ученые продолжают размышлять над этой проблемой.
Так вот. Специалисты по теории чисел решили взглянуть на «проблему близнецов» под похожим, так сказать, углом.
Может быть, можно сказать, что вот хотя бы на каком-то другом расстоянии d (превышающем двойку) уже можно гарантировать, что бесконечно много раз появятся соседние простые? То есть что расстояние между соседними простыми не будет уходить в бесконечность? До 2013 года это оставалось открытой проблемой даже в такой формулировке. В 2013 году математик Итан Чжан (Yitang Zhang) — китаец, работающий в США (как это часто случается с китайцами), доказал, что существует бесконечное множество пар простых чисел на расстоянии, не превышающем некоторого числа d > 2. Доказательство проверили: правильно, есть такое число d. Но единственное, что про него известно, — что оно не превышает 70000000 (см. вышеуказанную притчу). Как говорится, хотели рассматривать простые числа через окошко длиной в три единицы (2-трафарет) — не добились толку. А потом взяли трафарет побольше (70000000-трафарет), и получилось. Таким образом, здесь просматривается новое понятие «обобщенные простые числа-близнецы». Так что бывают 2-близнецы, бывают и 6-близнецы, …, 70000000-близнецы. Проблема распалась на бесконечную серию проблем, и с какого-то места (то есть с какого-то числа d) она оказалась решенной положительно.
Ведь что такое трафарет? Это такая рамочка. Вот я беру трафарет длиной в 70000000, и в окошечко рассматриваю натуральный ряд, двигаясь вдоль него. Фиксирую моменты, когда внутри этого промежутка встречаются простые числа (более одного). Так вот, их будет бесконечное количество, этих моментов. Чжан доказал, что достаточно взять трафарет длиной в 70000000, чтобы поймать бесконечное количество простых обобщенных близнецов. Конечно, если я сделаю d = 70000001, тем более поймаю бесконечное количество этих обобщенных близнецов. А если возьму чуть меньше, например, 60000000, то уже точно сказать ничего нельзя.
Это — большой прорыв. Потому что в 1896 году Адамаром и Валле-Пуссеном было доказано, что частота появления простых чисел уменьшается. Рассказывают, что Адамар появился в этот день в кафе и сиял как медный грош. Друзья спросили его: «Что-то у тебя такое хорошее настроение, как будто ты доказал асимптотический закон распределения простых чисел». А он и отвечает: «Вы знаете, вы не поверите, но я именно это и сделал, и именно с этим и связано мое хорошее настроение».
«Да ладно», — говорят. Потом проверили и оказалось, что доказательство верно.
Почему это потрясает и почему это убедительно говорит о нерегулярности появления простых чисел? Потому что закон Валле-Пуссена и Адамара говорит, что между соседними простыми числами (в районе натурального числа n) в среднем расстояние равно ln n (натуральный логарифм числа n). Эта функция очень медленно растет, но тем не менее стремится к бесконечности с ростом числа n.
Потом долго пытались придумать формулу для простого числа. Ее искали очень долго и в какой-то момент переключились на доказательство того, что ее в принципе быть не может. А в 1976 году на основе решения российским математиком Ю. В. Матвеевичем десятой проблемы Гильберта был написан конкретный многочлен 25-й степени с целыми коэффицентами от 26 переменных. (В формуле использованы все буквы английского