Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС
Шрифт:
Интервал:
Закладка:
Расчет волатильности
Один из важных параметров, который трейдер, желающий использовать описываемые в этой главе концепции, должен ввести, — это волатильность. Существует два способа определения волатильности. Первый — использование оценки на основе рыночных данных — дает подразумеваемую волатильность. Модели ценообразования опционов, представленные в этой главе, используют волатильность в качестве одного из своих входных параметров для получения справедливой теоретической цены опциона. Подразумеваемая волатильность основывается на предположении, что рыночная цена опциона эквивалентна его справедливой теоретической цене. Волатильность, которая дает справедливую теоретическую цену, равную рыночной цене, и есть подразумеваемая волатильность. Второй метод расчета волатильности основывается на использовании исторических данных. Полученная таким образом историческая волатильность определяется фактической ценой базового инструмента. Хотя волатильность в качестве входного данного в модели ценообразования опционов выражается в годовых процентах, при ее определении используется более короткий временной отрезок, обычно 10-20 дней, а получившийся в результате ответ переводится в годовое значение.
Ниже показан расчет 20-дневной годовой исторической волатильности.
Шаг 1. Разделите сегодняшнее закрытие на предыдущее закрытие рыночного дня.
Шаг 2. Возьмите натуральный логарифм частного, полученного в шаге 1. Для примера рассчитаем годовую историческую волатильность японской йены на март 1991 года. При написании даты будем использовать формат (год/месяц/день). Закрытие 910225, равное 74,52, разделим на закрытие 910222, равное 75,52.
74,82 / 75,52 = 0,9907309322 Натуральный логарифм 0,9907309322 равен 0,009312258.
Шаг 3. По истечении 21 дня у вас будет 20 значений для шага 2. Теперь рассчитайте 20-дневную скользящую среднюю значений из шага 2.
Шаг 4. Найдите 20-дневную дисперсию выборки данных из шага 2. Для этого необходима 20-дневная скользящая средняя (см. шаг 3). Далее, для каждого из 20 последних дней вычтем скользящую среднюю из значений шага 2. Теперь возведем в квадрат полученные значения, чтобы преобразовать все отрицательные ответы в положительные. После этого сложим все значения за последние 20 дней. Наконец, разделим найденную сумму на 19 и получим дисперсию по выборке данных за последние 20 дней. 20-дневная дисперсия для 901226 составляет 0,00009. Подобным образом вы можете рассчитать 20-дневную дисперсию для любого дня.
Шаг 5. После того как вы определили 20-дневную дисперсию для конкретного дня, необходимо преобразовать ее в 20-дневное стандартное отклонение. Это легко сделать путем извлечения квадратного корня из дисперсии. Таким образом, для 901226 квадратный корень дисперсии (которая, как было показано, равна 0,00009) даст нам 20-дневное стандартное отклонение 0,009486832981.
Шаг 6. Теперь преобразуем полученные данные в «годовые». Так как мы используем дневные данные и исходим из того, что по йене в году 252 торговых дня (примерно), умножим ответы из шага 5 на квадратный корень 252, то есть на 15,87450787. Для 901226 20-дневное стандартное отклонение по выборке составляет 0,009486832981. Умножив его на 15,87450787, получаем 0,1505988048. Это значение является исторической волатильностью, в нашем случае — 15,06%, и оно может быть использовано в качестве входного значения волатильности в модели ценообразования опционов Блэка-Шоулса.
Следующая таблица показывает шаги, необходимые для нахождения 20-дневной «годовой» исторической волатильности. Заметьте, что промежуточные шаги для определения дисперсии, которые были показаны в предыдущей таблице, сюда не включены.
А В С D 20-дневная средняя Е 20-дневная дисперсия F G Дата Закрытие LN изменений 20-дневное стандартное отклонение Годовое значение F * 15,87451 901127 77,96 901128 76,91 -0,0136 901129 74,93 -0,0261 901130 75,37 0,0059 901203 74,18 -0,0159 901204 74,72 0,0073 901205 74,57 -0,0020 901206 75,42 0,0113 901207 76,44 0,0134торгуете без опционов и рассматриваете торговлю как не ограниченную во времени, ваш реальный риск банкротства равен 1. При таких условиях вы неминуемо разоритесь, что вполне согласуется с уравнениями риска банкротства, поскольку в них в качестве входных переменных используются эмпирические данные, то есть входные данные в уравнениях риска банкротства основываются на ограниченных наборах сделок. Утверждение о гарантированном банкротстве при бесконечно долгой игре с неограниченной ответственностью делается с позиций параметрического подхода. Параметрический подход учитывает большие проигрышные сделки, которые расположены в левом хвосте распределения, но еще не произошли, поэтому они не являются частью ограниченного набора, используемого в качестве входных данных в уравнениях риска банкротства. Для примера представьте себе торговую систему, в которой применяется постоянное количество контрактов. В каждой сделке используется 1 контракт. Чтобы узнать, каким может стать баланс через Х сделок, мы просто умножим Х на среднюю сделку. Таким образом, если система имеет среднюю сделку 250 долларов и мы хотим знать, каким может стать баланс через 7 сделок, мы $250 умножим на 7 и получим $1750. Отметьте, что кривая арифметического математического ожидания задается линейной функцией. Любая сделка может принести убыток, который отбросит нас назад (временно) от ожидаемой линии. В такой ситуации есть предел проигрыша по сделке. Так как наша линия всегда выше, чем самая большая сумма, которую можно проиграть за сделку, мы не можем обанкротиться сразу. Однако длинная проигрышная полоса может отбросить нас достаточно далеко от этой линии, и мы не сможем продолжить торговлю, то есть обанкротимся. Вероятность подобного развития событий уменьшается с течением времени, когда линия ожидания становится выше. Уравнение риска банкротства позволяет рассчитать вероятность банкротства еще до того, как мы начнем торговать по выбранной системе. Если бы мы торговали в такой системе на основе фиксированной доли счета, линия загибалась бы вверх, становясь после каждой сделки все круче. Однако проигрыш всегда сопоставим с тем, насколько высоко мы находимся на линии. Таким образом, вероятность банкротства не уменьшается с течением времени. В теории, однако, риск банкротства при торговле фиксированной долей счета можно сделать равным нулю, если торговать бесконечно делимыми единицами. К реальной торговле это не применимо. Риск банкротства при торговле фиксированной долей счета всегда немного выше, чем в этой же системе при торговле на основе постоянного количества контрактов. В действительности, нет верхнего предела суммы, которую вы можете проиграть за одну сделку; кривые состояния счета могут снизиться до нуля за одну сделку независимо от того, насколько высоко они расположены. Таким образом, если мы торгуем бесконечно долгий период времени инструментом с неограниченной ответственностью, постоянным количеством контрактов или фиксированной долей счета, риск банкротства составляет 1. Банкротство гарантировано. Единственный способ избежать такого развития событий — поставить ограничение на максимальный проигрыш. Этого можно достичь, используя опционы, когда позиция относится в дебет (если трейдер платит за премию больше, чем получает, то разница между уплаченной и полученной суммами называется «дебет»)[18].
Модели ценообразования опционов
Представьте себе базовый инструмент (акция, облигация, валюта, товар и т.д.), цена которого движется вверх или вниз на 1 тик каждую последующую сделку Если мы будем измерять возможную стоимость акции через 100 тиков и рассмотрим большое количество вариантов, то обнаружим, что полученное распределение результатов — нормальное. Поведение цены в данном случае будет напоминать падение шарика через доску Галтона. Если рассчитать цену опциона, исходя из того принципа, что прибыль при покупке или продаже опционов должна быть равна нулю, мы получим биномиальную модель ценообразования опционов (или, коротко, биномиальную модель). Ее иногда также называют моделью Кокса-Росса-Рубинштейна в честь ее разработчиков. Такая цена опциона основывается на его ожидаемой стоимости (его арифметическом математическом ожидании), с тем расчетом, что вы не получаете прибыль, покупая или продавая опцион и удерживая его до истечения срока. В этом случае говорят, что опцион справедливо оценен.