Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Прочая научная литература » Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Читать онлайн Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 44 45 46 47 48 49 50 51 52 ... 78
Перейти на страницу:

Теперь нам нужно решить уравнение (4.16), где каждая ячейка представляет отдельный сценарий. Таким образом, для случая с 3 ячейками оптимальное f составляет 0,2, или 1 контракт на каждые 2750 долларов на счете (наш проигрыш наихудшего случая будет средней точкой первой ячейки, или (-$1000 + -$100) / /2 =-$550). Этот метод можно использовать в реальной торговле, хотя он и недостаточно точен, поскольку допускает, что наибольший проигрыш находится в середине наихудшей ячейки, а это не совсем верно. Часто полезно иметь одну лишнюю ячейку, чтобы включить проигрыш наихудшего случая. Допустим, как и в приме­ре с 3 ячейками, у нас была сделка с проигрышем в 1000 долларов. Такая сделка попадает в ячейку -1000 до -100 долларов и поэтому будет записана как 550 долла­ров (средняя точка ячейки), но мы можем разместить в ячейки те же данные сле­дующим образом:

Ячейка Ячейка Сделки Ассоциированная вероятность Ассоциированный результат -1000 -1000 1 0,1 -1000 -999 -100 1 0,1 -550 -100 100 5 0,5 0 100 1000 3 0,3 550

Теперь оптимальное f составляет 0,04, или 1 контракт на каждые 25 000 долла­ров на счете. Вы видите, насколько приблизителен этот метод? Поэтому, хотя этот метод даст нам оптимальное f для ячеистых данных, надо понимать, что потеря информации при размещении данных в ячейки может сделать резуль­таты настолько неточными, что они станут бесполезными. Если бы у нас было больше точек данных и больше ячеек, метод был бы намного точнее. Фактически, если бы у нас было бесконечное количество данных и бесконечное чис­ло ячеек, метод был бы абсолютно точным (если бы данные в каждой из ячеек были равны средним точкам соответствующих ячеек, то этот метод также был бы точным). Другой недостаток предлагаемого метода заключается в том, что среднее зна­чение ячейки не обязательно расположено в центре ячейки. В реальности сред­нее значение элементов в ячейке будет ближе к моде всего распределения, чем к средней точке ячейки. Следовательно, полученная дисперсия будет больше, чем есть на самом деле. Существуют способы корректировки, но и они могут быть неточными. Проблему можно было бы преодолеть, и результаты были бы точ­ными при бесконечном количестве элементов (сделок) и бесконечном количе­стве ячеек. Если у вас есть достаточно большое количество сделок и достаточно большое количество ячеек, вы можете использовать этот метод с большей уверенностью. Вы также можете провести тесты «что если», изменяя число элементов в различ­ных ячейках, чтобы получить более точное приближение.

Какое оптимальное f лучше?

Мы знаем, что можно найти оптимальное f, используя эмпирический подход, а также используя некоторые параметрические методы как для ячеистых, так и для неячеистых данных. Мы также знаем, что можно привести данные к текущей цене. Какое оптимальное f действительно оптимально — полученное по приве­денным или неприведенным данным?

Неприведенное эмпирическое оптимальное f рассчитывается на прошлых данных. Эмпирический метод для нахождения оптимального f, описанный в гла­ве 1, даст оптимальное f, которое реализовало бы наивысший геометрический рост по прошлому потоку результатов. Однако нам надо определить, какое значе­ние оптимального f использовать в будущем (особенно в следующей сделке), учи­тывая, что у нас нет достоверной информации об исходе следующей сделки. Мы точно не знаем, будет это прибыль (тогда оптимальное f будет 1) или убыток (тог­да оптимальное f будет 0). Мы можем выразить результат следующей сделки толь­ко распределением вероятности. Лучшим подходом для трейдеров, применяющих механическую систему, будет расчет f путем использования параметрического ме­тода с помощью регулируемой функции распределения, описанной в этой главе, с приведенными или неприведенными данными. Если есть значительное различие в использовании приведенных данных по сравнению с неприведенными, тогда, вероятно, расчеты сделаны по слишком большой истории сделок, или же данных на уровне текущих цен недостаточно. Для несистемных трейдеров лучшим может оказаться подход планирования сценария.

Теперь вы имеете представление как об эмпирических, так и параметри­ческих методах, а также о некоторых гибридных методах поиска оптималь­ного f. В следующей главе мы рассмотрим проблему поиска оптимального f (па­раметрическим способом) для случая, когда одновременно открыто несколько позиций.

Глава 5

Введение в методы управления капиталом с использованием параметрического подхода при одновременной торговле по нескольким позициям

В этой книге уже упоминалось об использовании опционов отдельно или совместно с позицией по базовому инструменту для улучшения торговых результатов. Покупка пут-опциона вместе с длинной позицией по базовому инструменту (или просто покупка колл-оп-циона), а иногда даже продажа (короткая продажа) колл-опциона совместно с длинной позицией по базовому инструменту могут ус­корить асимптотический геометрический рост. Это происходит потому, что очень часто (но не всегда) использование опционов уменьшает дисперсию в большей степени, чем уменьшает арифме­тический средний доход. В результате, исходя из фундаментально­го уравнения торговли, мы получаем большее оценочное TWR. Опционы можно использовать как самостоятельные инструмен­ты, так и вместе с позициями по базовому инструменту для уп­равления риском. В будущем, так как трейдеры все больше кон­центрируются на управлении риском, опционы, вероятно, будут играть еще большую роль. В книге «Формулы управления портфелем» была рассмотрена взаи­мосвязь оптимального/и опционов. * В этой главе мы продолжим начатую дискуссию и обсудим торговлю по нескольким позициям, а также поговорим об опционах. Настоящая глава посвящена еще одному методу поиска оптималь­ного/для немеханических торговых систем. Параметрические ме­тоды, рассмотренные до этого момента, могут использовать те, кто не применяет механические системы. Допустим, вы не исполь­зуете механическую систему и применяете метод, описанный в главе 4. Если вы захотите рассчитать эксцесс, то сделать это будет не очень легко (по крайней мере, точное значение эксцесса быстро получить, скорее всего, не удастся). Данная глава предназ­начена прежде всего для тех, кто использует немеханические ме­тоды принятия решений об открытии и закрытии позиций. Трей­дерам, использующим эти методы, надо будет рассчитывать не параметры распределения сделок, а значения для волатильности базового инструмента и прогнозируемой цены базового инструмен­та. Трейдеру, не использующему механическую, объективную сис­тему, будет намного легче получить именно эти величины, чем рассчитать параметры для распределения сделок, которые еще не произошли.

Обсуждение оптимального/и его побочных продуктов для тех трейдеров, которые не используют механическую, объективную систему, мы начнем с рассмотрения ситуации, когда одновремен­но открыто несколько позиций. Означает ли это, что тот, кто использует механические методы для открытия и закрытия по­зиций, не может использовать описанные подходы? Нет. В Главе 6 предложен метод поиска оптимальных, одновременно откры­тых позиций независимо от того, использует трейдер механичес­кую систему или нет. В этой главе рассмотрена ситуация, когда одновременно открыто несколько позиций (с использованием оп­ционов или без), и применяется немеханический подход.

Расчет волатильности

Один из важных параметров, который трейдер, желающий использовать опи­сываемые в этой главе концепции, должен ввести, — это волатильность. Су­ществует два способа определения волатильности. Первый — использование оценки на основе рыночных данных — дает подразумеваемую волатильность. Модели ценообразования опционов, представленные в этой главе, использу­ют волатильность в качестве одного из своих входных параметров для получе­ния справедливой теоретической цены опциона. Подразумеваемая волатиль­ность основывается на предположении, что рыночная цена опциона эквива­лентна его справедливой теоретической цене. Волатильность, которая дает справедливую теоретическую цену, равную рыночной цене, и есть подразуме­ваемая волатильность. Второй метод расчета волатильности основывается на использовании исто­рических данных. Полученная таким образом историческая волатильность оп­ределяется фактической ценой базового инструмента. Хотя волатильность в ка­честве входного данного в модели ценообразования опционов выражается в го­довых процентах, при ее определении используется более короткий временной отрезок, обычно 10-20 дней, а получившийся в результате ответ переводится в годовое значение.

1 ... 44 45 46 47 48 49 50 51 52 ... 78
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС торрент бесплатно.
Комментарии