- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС
Шрифт:
Интервал:
Закладка:
Этот принцип формально описывается в первом законе арксинуса, который гласит:
Для фиксированного А (0 < А < 1), когда N стремится к бесконечности, время, проведенное в положительной области (т.е., когда К / N < А), будет определяться следующим образом:
N = количество бросков;
К = количество бросков в положительной области.
Даже при N = 20 вы получите очень хорошее приближение для вероятности.
Уравнение (2.14), то есть первый закон арксинуса, говорит нам, что с вероятностью 0,1 кривая баланса счета проведет 99,4% времени в одной области (положительной или отрицательной). С вероятностью 0,2 кривая баланса будет находиться в той же области 97,6% времени. С вероятностью 0,5 кривая баланса счета проведет в одной области более 85,35% времени. Настолько упряма кривая баланса простой монетки!
Существует также второй закон арксинуса, который основан на уравнении (2.14) и дает те же вероятности, что и первый закон арксинуса, но применяется к другому случаю, максимуму или минимуму кривой баланса. Второй закон арксинуса гласит, что максимальная (или минимальная) точка кривой баланса вероятнее всего будет при начальном или конечном бросках, чем в середине игры. Распределение будет таким же, как и в случае со временем, проведенным в одной области!
Если вы бросаете монету N раз, вероятность достижения максимума (или минимума) в точке К на кривой баланса также описывается уравнением (2.13):
Таким образом, если бросить монету 10 раз (N = 10), мы получим следующие вероятности максимума (или минимума) при К бросках:
к Вероятность о 0,14795 1 0,1061 2 0,0796 3 0,0695 4 0,065 5 0,0637 6 0,065 7 0,0695 8 0,0796 9 0,1061 10 0,14795Второй закон арксинуса говорит о том, что максимум (или минимум) вероятнее всего будет рядом с крайними точками кривой баланса.
Время, проведенное в проигрыше
Вспомните первоначальные предположения в законах арксинуса. Законы арксинуса допускают 50% шанс выигрыша и 50% шанс проигрыша. Более того, они допускают, что вы выигрываете или проигрываете одинаковые суммы, а поток сделок случаен. Торговля является значительно более сложной игрой. Таким образом, в чистом виде законы арксинуса не применимы к торговле. Законы арксинуса верны при нулевом арифметическом математическом ожидании. Таким образом, согласно первому закону, мы можем интерпретировать процент времени, проведенного с любой стороны нулевой линии, как процент времени с любой стороны арифметического математического ожидания. Так же обстоит дело и со вторым законом, где вместо того, чтобы искать абсолютный максимум и минимум, мы поищем максимум выше математического ожидания и минимум ниже его. Минимум ниже математического ожидания может быть больше, чем максимум выше него, если минимум был позднее, и арифметическое математическое ожидание было повышающейся линией (как в торговле), а не горизонтальной линией на нулевом уровне. Таким образом, мы можем считать, что общая идея законов арксинуса применима к торговле. Однако вместо горизонтальной линии на нулевом уровне следует начертить линию, направленную вверх со скоростью арифметической средней торговли (если торговля ведется постоянным количеством контрактов). Если мы
используем торговлю фиксированной долей, то линия будет направлена вверх, становясь более крутой со скоростью среднего геометрического. Мы можем интерпретировать первый закон арксинуса следующим образом: наша система будет находиться с одной стороны линии математического ожидания большее число сделок, чем с другой стороны этой линии. В отношении второго закона арксинуса можно сказать, что максимальные отклонения от линии математического ожидания (выше или ниже ее) будут чаще встречаться рядом с начальной или конечной точкой кривой баланса и реже в середине. Отметим еще одну характеристику, которая очень важна при торговле с оптимальным f. Эта характеристика касается времени, которое вы проводите между двумя пиками баланса. Если вы торгуете на уровне оптимального f (в одной рыночной системе или портфелем рыночных систем), период самого длительного проигрыша[10] (не обязательно наибольшего) может составить от 35 до 55% времени, на протяжении которого ведется торговля. Это справедливо независимо от того, какой временной период вы рассматриваете! (Время здесь измеряется в сделках).
Это правило не жесткое. Скорее, это возможное проявление сути законов арксинуса в реальной жизни.
Данный принцип справедлив независимо от того, насколько длинный или короткий период времени вы рассматриваете. Мы можем находиться в проигрыше приблизительно от 35 до 55% времени за весь период работы торговой программы! Это верно независимо от того, используем мы одну рыночную систему или портфель. Поэтому надо быть готовыми к периодам проигрыша 35-55% времени торговой программы, тогда мы сможем психологически подготовиться к торговле в эти периоды.
Собираетесь ли вы управлять чьим-то счетом, отдать деньги в управление или торговать со своего собственного счета, вы должны помнить о законах арксинуса и знать, что может произойти с кривой баланса, а также помнить правило 35-55%. Таким образом, вы будете готовы к тому, что может произойти в будущем. Мы достаточно подробно изучили эмпирические подходы. Кроме того, мы обсудили многие характеристики торговли фиксированной долей и узнали некоторые полезные методы, которые будут использоваться в дальнейшем. Мы увидели, что при торговле на оптимальных уровнях следует ожидать не только значительных падений баланса счета, но и длительного периода времени, необходимого для того, чтобы снова заработать проигранные деньги. В следующей главе мы поговорим о параметрических подходах.
Глава 3
Параметрическое оптимальное f при нормальном распределении
Теперь, когда мы закончили рассмотрение эмпирических методов, а также характеристик торговли фиксированной долей, мы изучим параметрические методы. Эти методы отличаются от эмпирических тем, что в них не используется прошлая история в качестве данных, с которыми придется работать. Мы просто наблюдаем за прошлой историей для создания математического описания распределения исторических данных. Это математическое описание основывается на том, что произошло в прошлом, а также на том, что, как мы ожидаем, произойдет в будущем. В параметрических методах мы имеем дело с этими математическими описаниями, а не с самой прошлой историей. Математические описания, используемые в параметрических методах, называются распределениями вероятности. Чтобы использовать параметрические методы, мы должны сначала изучить распределения вероятности. Затем мы перейдем к изучению очень важного типа распределения, нормального распределения. Мы узнаем, как найти оптимальное/и его побочные продукты при нормальном распределении.
Основы распределений вероятности
Представьте себе, что вы находитесь на ипподроме и ведете запись мест, на которых лошади финишируют в забегах. Вы записываете, какая лошадь пришла первой, какая второй и так далее для каждого забега. Учитываются только первые десять мест. Если лошадь пришла после десятой, то вы запишете ее на десятое место. Через несколько дней вы соберете достаточное количество информации и увидите распределение финишных мест для каждой лошади. Теперь вы можете взять полученные данные и нанести на график. По горизонтальной оси будут отмечаться места, на которых лошадь финишировала, слева на оси будет наихудшее место (десятое), а справа наилучшее (первое). На вертикальной оси мы будем отмечать, сколько раз беговая лошадь финишировала в позиции, отмеченной на горизонтальной оси. Вы увидите, что построенная кривая будет иметь колоколообразную форму.
При таком сценарии есть десять возможных финишных мест для каждого забега. Мы будем говорить, что в этом распределении — десять ячеек (bins). Посмотрим, что произойдет, если вместо десяти мы будем использовать пять ячеек. Первая ячейка будет для первого и второго места, вторая ячейка для третьего и четвертого места и так далее. Как это отразится на результатах?
Использование меньшего количества ячеек при том же наборе данных в результате дало бы распределение вероятности с тем же профилем, что и при большом количестве ячеек. То есть графически они бы выглядели примерно одинаково. Однако использование меньшего количества ячеек уменьшает информационное содержание распределения, и наоборот, использование большего количества ячеек повышает информационное содержание распределения. Если вместо финишных позиций лошадей в каждом забеге мы будем записывать время, за которое пробежала лошадь, округленное до ближайшей секунды, то получим не десять ячеек, а больше, и, таким образом, информационное содержание распределения увеличится.

