Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Прочая научная литература » Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Читать онлайн Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 26 27 28 29 30 31 ... 78
Перейти на страницу:

Этот принцип формально описывается в первом законе арксинуса, который гласит:

Для фиксированного А (0 < А < 1), когда N стремится к бесконечности, время, проведенное в положительной области (т.е., когда К / N < А), будет определяться следующим образом:

N = количество бросков;

К = количество бросков в положительной области.

Даже при N = 20 вы получите очень хорошее приближение для вероятности.

Уравнение (2.14), то есть первый закон арксинуса, говорит нам, что с ве­роятностью 0,1 кривая баланса счета проведет 99,4% времени в одной облас­ти (положительной или отрицательной). С вероятностью 0,2 кривая баланса будет находиться в той же области 97,6% времени. С вероятностью 0,5 кривая баланса счета проведет в одной области более 85,35% времени. Настолько упряма кривая баланса простой монетки!

Существует также второй закон арксинуса, который основан на уравнении (2.14) и дает те же вероятности, что и первый закон арксинуса, но применяется к другому случаю, максимуму или минимуму кривой баланса. Второй закон аркси­нуса гласит, что максимальная (или минимальная) точка кривой баланса вероят­нее всего будет при начальном или конечном бросках, чем в середине игры. Рас­пределение будет таким же, как и в случае со временем, проведенным в одной об­ласти!

Если вы бросаете монету N раз, вероятность достижения максимума (или минимума) в точке К на кривой баланса также описывается уравнением (2.13):

Таким образом, если бросить монету 10 раз (N = 10), мы получим следующие ве­роятности максимума (или минимума) при К бросках:

к Вероятность о 0,14795 1 0,1061 2 0,0796 3 0,0695 4 0,065 5 0,0637 6 0,065 7 0,0695 8 0,0796 9 0,1061 10 0,14795

Второй закон арксинуса говорит о том, что максимум (или минимум) вероятнее всего будет рядом с крайними точками кривой баланса.

Время, проведенное в проигрыше

Вспомните первоначальные предположения в законах арксинуса. Законы арксину­са допускают 50% шанс выигрыша и 50% шанс проигрыша. Более того, они допус­кают, что вы выигрываете или проигрываете одинаковые суммы, а поток сделок случаен. Торговля является значительно более сложной игрой. Таким образом, в чистом виде законы арксинуса не применимы к торговле. Законы арксинуса верны при нулевом арифметическом математическом ожи­дании. Таким образом, согласно первому закону, мы можем интерпретировать процент времени, проведенного с любой стороны нулевой линии, как процент времени с любой стороны арифметического математического ожидания. Так же обстоит дело и со вторым законом, где вместо того, чтобы искать абсолютный максимум и минимум, мы поищем максимум выше математического ожидания и минимум ниже его. Минимум ниже математического ожидания может быть боль­ше, чем максимум выше него, если минимум был позднее, и арифметическое ма­тематическое ожидание было повышающейся линией (как в торговле), а не гори­зонтальной линией на нулевом уровне. Таким образом, мы можем считать, что общая идея законов арксинуса приме­нима к торговле. Однако вместо горизонтальной линии на нулевом уровне следу­ет начертить линию, направленную вверх со скоростью арифметической средней торговли (если торговля ведется постоянным количеством контрактов). Если мы

используем торговлю фиксированной долей, то линия будет направлена вверх, становясь более крутой со скоростью среднего геометрического. Мы можем ин­терпретировать первый закон арксинуса следующим образом: наша система будет находиться с одной стороны линии математического ожидания большее число сделок, чем с другой стороны этой линии. В отношении второго закона арксинуса можно сказать, что максимальные отклонения от линии математического ожида­ния (выше или ниже ее) будут чаще встречаться рядом с начальной или конечной точкой кривой баланса и реже в середине. Отметим еще одну характеристику, которая очень важна при торговле с опти­мальным f. Эта характеристика касается времени, которое вы проводите между дву­мя пиками баланса. Если вы торгуете на уровне оптимального f (в одной рыночной системе или портфелем рыночных систем), период самого длительного проигры­ша[10] (не обязательно наибольшего) может составить от 35 до 55% времени, на про­тяжении которого ведется торговля. Это справедливо независимо от того, какой временной период вы рассматриваете! (Время здесь измеряется в сделках).

Это правило не жесткое. Скорее, это возможное проявление сути законов арк­синуса в реальной жизни.

Данный принцип справедлив независимо от того, насколько длинный или короткий период времени вы рассматриваете. Мы можем находиться в проигры­ше приблизительно от 35 до 55% времени за весь период работы торговой про­граммы! Это верно независимо от того, используем мы одну рыночную систему или портфель. Поэтому надо быть готовыми к периодам проигрыша 35-55% вре­мени торговой программы, тогда мы сможем психологически подготовиться к торговле в эти периоды.

Собираетесь ли вы управлять чьим-то счетом, отдать деньги в управление или торговать со своего собственного счета, вы должны помнить о законах арксинуса и знать, что может произойти с кривой баланса, а также помнить правило 35-55%. Таким образом, вы будете готовы к тому, что может произойти в будущем. Мы достаточно подробно изучили эмпирические подходы. Кроме того, мы обсуди­ли многие характеристики торговли фиксированной долей и узнали некоторые полез­ные методы, которые будут использоваться в дальнейшем. Мы увидели, что при тор­говле на оптимальных уровнях следует ожидать не только значительных падений баланса счета, но и длительного периода времени, необходимого для того, чтобы сно­ва заработать проигранные деньги. В следующей главе мы поговорим о параметри­ческих подходах.

Глава 3

Параметрическое оптимальное f при нормальном распределении

Теперь, когда мы закончили рассмотрение эмпирических методов, а также характеристик торговли фиксированной долей, мы изу­чим параметрические методы. Эти методы отличаются от эм­пирических тем, что в них не используется прошлая история в качестве данных, с которыми придется работать. Мы просто наблюдаем за прошлой историей для создания математического описания распределения исторических данных. Это математи­ческое описание основывается на том, что произошло в прошлом, а также на том, что, как мы ожидаем, произойдет в будущем. В параметрических методах мы имеем дело с этими математичес­кими описаниями, а не с самой прошлой историей. Математические описания, используемые в параметрических ме­тодах, называются распределениями вероятности. Чтобы ис­пользовать параметрические методы, мы должны сначала изу­чить распределения вероятности. Затем мы перейдем к изучению очень важного типа распределения, нормального распределения. Мы узнаем, как найти оптимальное/и его побочные продукты при нормальном распределении.

Основы распределений вероятности

Представьте себе, что вы находитесь на ипподроме и ведете запись мест, на которых лошади финишируют в забегах. Вы записываете, какая лошадь пришла первой, ка­кая второй и так далее для каждого забега. Учитываются только первые десять мест. Если лошадь пришла после десятой, то вы запишете ее на десятое место. Через не­сколько дней вы соберете достаточное количество информации и увидите распреде­ление финишных мест для каждой лошади. Теперь вы можете взять полученные данные и нанести на график. По горизонтальной оси будут отмечаться места, на ко­торых лошадь финишировала, слева на оси будет наихудшее место (десятое), а спра­ва наилучшее (первое). На вертикальной оси мы будем отмечать, сколько раз бего­вая лошадь финишировала в позиции, отмеченной на горизонтальной оси. Вы уви­дите, что построенная кривая будет иметь колоколообразную форму.

При таком сценарии есть десять возможных финишных мест для каждого за­бега. Мы будем говорить, что в этом распределении — десять ячеек (bins). Посмот­рим, что произойдет, если вместо десяти мы будем использовать пять ячеек. Пер­вая ячейка будет для первого и второго места, вторая ячейка для третьего и четвер­того места и так далее. Как это отразится на результатах?

Использование меньшего количества ячеек при том же наборе данных в резуль­тате дало бы распределение вероятности с тем же профилем, что и при большом количестве ячеек. То есть графически они бы выглядели примерно одинаково. Од­нако использование меньшего количества ячеек уменьшает информационное со­держание распределения, и наоборот, использование большего количества ячеек повышает информационное содержание распределения. Если вместо финишных позиций лошадей в каждом забеге мы будем записывать время, за которое пробежа­ла лошадь, округленное до ближайшей секунды, то получим не десять ячеек, а боль­ше, и, таким образом, информационное содержание распределения увеличится.

1 ... 23 24 25 26 27 28 29 30 31 ... 78
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС торрент бесплатно.
Комментарии