Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Прочая научная литература » Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Читать онлайн Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 22 23 24 25 26 27 28 29 30 ... 78
Перейти на страницу:

У Джо есть двоюродный брат, Сесил Пуцивакян. Когда ему нужен бензин, он просто наполняет бак и сетует на высокую цену. В результате, Сесил использует постоянное количество топлива каждую неделю и поэтому платит среднюю цену всю свою автомобильную жизнь.

Предположим, вы ищите долгосрочную инвестиционную программу. В ито­ге вы решаете вложить деньги во взаимный фонд, чтобы обеспечить себе дос­тойную старость. Вы полагаете, что, когда уйдете на пенсию, акции взаимного фонда будут стоить намного дороже, чем сегодня, то есть, в асимптотическом смысле, инвестиции во взаимный фонд принесут деньги (с другой стороны, в асимптотическом смысле, и молния дважды ударит в одно и то же место). Одна­ко вы не знаете, какова будет стоимость этих вложений в следующем месяце или в следующем году. У вас нет информации о краткосрочной тенденции цен акций взаимного фонда.

Чтобы решить эту проблему, вы можете усреднить цену покупки акций взаим­ного фонда. Скажем, вы хотите купить акции взаимного фонда на определенную сумму в течение двух лет. Для инвестирования у вас есть 36 000 долларов. Поэтому каждый месяц в течение следующих 24 месяцев из этих 36 000 долларов вы будете инвестировать в фонд по 1500 долларов. Таким образом, вы вложите деньги в фонд ниже средней цены. Под «средней» имеется в виду средняя цена за 24 меся­ца, в течение которых вы инвестируете. Это не обязательно означает, что вы полу­чите цену, которая меньше, чем в случае разовой инвестиции 36 000 долларов, и не гарантирует, что в конце этих 24 месяцев вы получите прибыль на вложенные 36 000 долларов. Сумма, которую вы инвестировали в акции фонда, к этому вре­мени может быть меньше 36 000 долларов. Все вышесказанное означает только то, что если вы войдете в какой-то произвольной точке в течение 24 месяцев с 36 000 долларов, то сможете купить меньше акций фонда и, следовательно, заплатите более высокую цену, чем при усреднении.

Похожим образом следует поступать, когда вы собираетесь выйти из взаимного фонда, только теперь это относится к усреднению цены продаж акций, а не к усред­нению цены покупки. Скажем, вы уходите на пенсию с 1000 акций этого взаимного фонда. Вы не знаете, пришло время выходить из фонда или нет, поэтому решаете продавать акции в течение 2 лет (24 месяца), чтобы усреднить цену выхода. Вот как следует действовать. Возьмите общее количество акций (1000) и разделите их на количество периодов, за которое хотите выйти (24 месяца). Так как 1000 / 24 = 41,67, то последующие 24 месяца вы будете продавать 41,67 акций каждый месяц. Таким образом, вы продадите свои акции по более высокой цене, чем сред­няя цена за эти 24 месяца. Конечно, нет гарантии, что вы продадите их по более высокой цене, чем сегодняшняя, и совсем необязательно, что вы продадите акции по более высокой цене, чем через 24 месяца. Вы получите более высокую цену, чем средняя цена за период времени, когда вы усредняетесь. Это вам гарантировано. Те же принципы можно применять к торговому счету. В противополож­ность «одному решительному шагу» в какой-то точке в течение выбранного отрезка времени входите на рынок по лучшей «средней цене». При отсутствии информации о том, каким будет краткосрочное изменение баланса на счете, вам лучше усредняться. Не полагайтесь только на свою выдержку и интуицию, используйте методы измерения зависимости ежемесячных изменений баланса торговой программы (см. главу 1). Попытайтесь понять, есть ли зависимость в ежемесячных изменениях баланса. Если зависимость существует при доста­точно высоком доверительном уровне, чтобы вы могли полностью войти в благоприятной точке, тогда так и делайте. Однако если нет достаточно высо­кой уверенности относительно зависимости в ежемесячных изменениях ба­ланса, тогда усредняйтесь. Таким образом, у вас будет преимущество в асимп­тотическом смысле. То же верно в случае снятия денег со счета. Аналогично усреднению при покупке (неважно, торгуете вы акциями или товарами) следует принять реше­ние о дате начала усреднения, а также о том, насколько долгий период време­ни необходим для усреднения. В тот день, когда вы собираетесь начать усред­нение, разделите баланс счета на 100. Это даст вам стоимость «I акции». Те­перь разделите 100 на количество периодов, по прошествии которых вы закончите усреднение. Скажем, вы хотите снять все деньги со счета в течение следующих 20 недель. Разделив 100 на 20, вы получите 5. Поэтому вы будете снимать со своего счета 5 «акций» в неделю. Умножьте величину, которую вы вычислили как 1 «акцию», на 5, чтобы знать, сколько денег снять с торгового счета в эту неделю. Теперь вы должны отслеживать, сколько «акций» у вас ос­талось. Так как вы взяли 5 долей на прошлой неделе, у вас осталось 95. Когда подойдет время для второго снятия, разделите баланс на вашем счете на 95 и умножьте на 5. Это даст вам стоимость 5 «акций», которые вы «переведете в наличные» на этой неделе. Следуйте этой стратегии, пока у вас не закончатся «акции». Таким образом, средняя цена продажи будет лучше, чем цена в про­извольной точке в течение этих 20 недель.

Этот принцип усреднения настолько прост, что остается только поражаться, почему мало кто ему следует. Я всегда использую этот принцип в торговле, однако не встречал никого, кто следовал бы моему примеру. Причина проста. Эта доста­точно эффективная концепция требует дисциплины и времени для проработки, и при этом точно те же составляющие необходимы для использования концепции оптимального f. Посоветуйтесь с Джо Пуцивакяном. Понять концепции и поверить в них — только полдела. Самое важное — следовать им.

Законы арксинуса и случайное блуждание

Давайте поговорим о проигрышах, но сначала скажем несколько слов о пер­вом и втором законах арксинуса. Эти принципы относятся к случайному блужданию. Поток торговых P&L в некоторых случаях может быть неслучай­ным, хотя обычно большинство потоков торговых прибылей и убытков почти случайны, что можно подтвердить серийным тестом и коэффициентом ли­нейной корреляции. Законы арксинуса предполагают, что вы заранее знаете сумму, которую можно выиграть или проиграть, и допускают, что сумма, которую можно выиграть, равна сумме, которую можно проиграть, и эта сумма постоянна. В нашей дискуссии мы допустим, что сумма, которую вы можете выиграть или проиграть, — это 1 доллар за каждую игру. Законы арксинуса также допускают, что у вас есть 50% шанс выиг­рыша и 50% шанс проигрыша. Таким образом, законы арксинуса предполагают игру, где математическое ожидание составляет 0. Эти предположения относятся к играм, которые значительно проще, чем тор­говля. Однако первый и второй законы арксинуса в точности относятся к только что описанной игре. Конечно, напрямую они не применимы к реальной торгов­ле, но для наглядности мы не будем различать игру и торговлю. Представим себе действительно случайную последовательность, такую, как бросок монеты[8], где мы получаем 1 единицу, когда выигрываем, и теряем 1 единицу, когда проигрываем. Если бы мы строили кривую баланса за Х чис­ло бросков, то наносили бы точки с координатами (X, Y), где Х представляет собой номер броска, а Y — наш общий выигрыш или проигрыш после этого броска.

Введем понятие положительной области, когда кривая баланса находится выше оси Х или на оси X, если предыдущая точка была выше X. Таким же образом мы определим отрицательную область, когда кривая баланса находится ниже оси Х или на оси X, если предыдущая точка была ниже X. Логично предположить, что общее количество точек в положительной области будет примерно равно общему количеству точек в отрицательной области. На самом деле это не так. Если бро­сить монету N раз, то вероятность (Prob) осуществления К событий в положи­тельной области составит:

Символ ~ означает, что обе части стремятся к равенству в пределе. В этом случае, так как или К, или (N - К) стремятся к бесконечности, обе части уравнения будут стремиться к равенству.

Таким образом, если бросить монету 10 раз (N = 10), мы получим следующие вероятности нахождения в положительной области:

К Вероятность[9] о 0,14795 1 0,1061 2 0,0796 3 0,0695 4 0,065 5 0,0637 6 0,065 7 0,0695 8 0,0796 9 0,1061 10 0,14795

Можно ожидать попадания в положительную область 5-ти из 10-ти бросков, но это наименее вероятный результат!

Наиболее вероятным результатом будет нахождение в положительной области при всех бросках или ни при одном!

Этот принцип формально описывается в первом законе арксинуса, который гласит:

Для фиксированного А (0 < А < 1), когда N стремится к бесконечности, время, проведенное в положительной области (т.е., когда К / N < А), будет определяться следующим образом:

1 ... 22 23 24 25 26 27 28 29 30 ... 78
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС торрент бесплатно.
Комментарии