- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС
Шрифт:
Интервал:
Закладка:
где Y=1/(1+2316419*ABS(Z))
и ABSQ = функция абсолютного значения;
ЕХР() = экспоненциальная функция.
При расчете вероятности мы всегда будем преобразовывать данные в стандартные единицы. То есть вместо функции N(X) мы будем использовать функцию
N(Z), где:
(3.16) Z=(X-U)/S,
где U = среднее значение данных;
S = стандартное отклонение данных;
Х = наблюдаемая точка данных.
Теперь обратимся к уравнению (3.21). Допустим, нам надо знать, какова вероятность события, не превышающего +2 стандартных единицы (Z = +2).
Y= 1/(1 +2316419*ABS(+2)) =1/1,4632838 =0,68339443311
(3.15a) N'(Z) = 0,398942 * ЕХР(-(+2^2/2))
= 0,398942 *ЕХР (-2)=0,398942*0,1353353=0,05399093525
Заметьте, мы можем найти высоту кривой при +2 стандартных единицах. Подставляя полученные значения вместо Y и N'(Z) в уравнение (3.21), мы можем получить вероятность события, не превышающего +2 стандартных единицы:
N(Z) = 1 - N'(Z) * ((1,330274429 * Y^ 5) -
- (1,821255978 * Y^4) + (1,781477937 * Y^ 3) -
- (0,356563782 * Y ^ 2) + (0,31938153 * Y))
= 1-0,05399093525* ((1,330274429* 0,68339443311^5)-
- (1,821255978 * 0,68339443311 ^ 4 + 1,781477937 * 0,68339443311^ 3) - - (0,356563782 * 0,68339443311 ^2) + 0,31938153 * 0,68339443311))
= 1 - 0,05399093525 * (1,330274429 * 0,1490587) -
- (1,821255978 * 0,2181151 + (1,781477937 * 0,3191643)-
- (0,356563782 * 0,467028 + 0,31938153 - 0,68339443311))
1- 0,05399093525 * (0,198288977 - 0,3972434298 + 0,5685841587 -
-0,16652527+0,2182635596)
= 1 - 0,05399093525 * 0,4213679955 = 1 - 0,02275005216= 0,9772499478
Таким образом, можно ожидать, что 97,72% результатов в нормально распределенном случайном процессе не попадают за +2 стандартные единицы. Это изображено на рисунке 3-8.
Чтобы узнать, какова вероятность события, равного или превышающего заданное число стандартных единиц (в нашем случае +2), надо просто изменить уравнение (3.21) и не использовать условие «Если Z < 0, то N(Z) = 1 - N(Z)». Поэтому вторая с конца строка в последнем расчете изменится с
= 1 - 0,02275005216 на 0,02275005216
Таким образом, с вероятностью 2,275% событие в нормально распределенном случайном процессе будет равно или превышать +2 стандартные единицы. Это показано на рисунке 3-9.
Рисунок 3-8 Уравнение (3.21) для вероятности Z=+2
Рисунок 3-9 Устранение оговорки «Если Z < 0, то N(Z) = 1 - N(Z)» в уравнении (3.21)
До сих пор мы рассматривали площади под кривой 1-хвостых распределений вероятности. То есть до настоящего момента мы отвечали на вопрос: «Какова вероятность события, которое меньше (больше) заданного количества стандартных единиц от среднего?» Предположим, теперь нам надо ответить на такой вопрос: «Какова вероятность события, которое находится в интервале между определенным количеством стандартных единиц от среднего?» Другими словами, мы хотим знать, как подсчитать 2-хвостые вероятности. Посмотрим на рисунок 3-10. Он представляет вероятности события в интервале двух стандартных единиц от среднего. В отличие от рисунка 3-8 этот расчет вероятности не включает крайнюю область левого хвоста, область меньше -2 стандартных единиц. Для расчета вероятности нахождения в диапазоне Z стандартных единиц от среднего вы должны сначала рассчитать 1-хвостую вероятность абсолютного значения Z с помощью уравнения (3.21), а затем полученное значение подставить в уравнение (3.22), которое дает 2-хвостые вероятности (то есть вероятности нахождения в диапазоне ABS(Z) стандартных единиц от среднего):
(3.22) 2-хвостая вероятность =1-((1- N(ABS(Z))) * 2)
Если мы рассматриваем вероятности наступления события в диапазоне 2 стандартных отклонений (Z = 2), то из уравнения (3.21) найдем, что N(2) = 0,9772499478 и можно использовать полученное значение для уравнения (3.22):
2-хвостая вероятность =1-((1- 0,9772499478) * 2) =1-(0,02275005216*2) = 1 - 0,04550010432 = 0,9544998957
Таким образом, из этого уравнения следует, что при нормально распределенном случайном процессе вероятность события, попадающего в интервал 2 стандартных единиц от среднего, составляет примерно 95,45%.
Как и в случае с уравнением (3.21), можно убрать первую единицу в уравнении (3.22), чтобы получить (1 - N(ABS(Z))) * 2, что представляет вероятности события вне ABS(Z) стандартных единиц от среднего. Это отображено на рисунке 3-11. Для нашего примера, где Z = 2, вероятность события при нормально распределенном случайном процессе вне 2 стандартных единиц составляет:
2-хвостая вероятность (вне) = (1 - 0,9772499478) * 2 =0,02275005216*2 =0,04550010432
Наконец, мы рассмотрим случай, когда надо найти вероятности (площадь под кривой N'(Z)) для двух различных значений Z.
Рисунок 3-10 2-хвостая вероятность события между +2 и -2 сигма
Рисунок 3-11 2-хвостая вероятность события, находящегося вне 2 сигма
Допустим, нам надо найти площадь под кривой N'(Z) между -1 стандартной единицей и +2 стандартными единицами. Есть два способа расчета. Мы можем рассчитать вероятность, не превышающую +2 стандартные единицы, при помощи уравнения (3.21) и вычесть вероятность, не превышающую -1 стандартную единицу (см. рисунок 3-12). Это даст нам:
0,9772499478 - 0,1586552595 = 0,8185946883
Рисунок 3-12 Площадь между -1 и +2 стандартными единицами
Другой способ: из единицы, представляющей всю площадь под кривой, надо вычесть вероятность, не превышающую -1 стандартную единицу, и вероятность, превышающую 2 стандартные единицы:
= 1 - (0,022750052 + 0,1586552595) = 1 -0,1814053117 =0,8185946883
С помощью рассмотренных в этой главе математических подходов вы сможете рассчитывать любые вероятности событий для случайных процессов, имеющих нормальное распределение.
Последующие производные нормального распределения
Иногда требуется знать вторую производную функции N(Z). Так как функция N(Z) дает нам значение площади под кривой при Z, а функция N'(Z) дает нам высоту самой кривой при значении Z, тогда функция N"(Z) дает нам мгновенный наклон (instantaneous slope) кривой при данном значении Z:
где ЕХР() = экспоненциальная функция.
Найдем наклон кривой N'(Z) при +2 стандартных отклонениях:
N"(Z) = -2 I 2,506628274 * ЕХР(-(+2^ 2) / 2) = -2 / 2,506628274 * ЕХР(-2) = -2 / 2,506628274 * 0,1353353 =-0,1079968336
Теперь мы знаем, что мгновенная скорость изменения функции N'(Z) при Z = +2 равна-0,1079968336. Это означает повышение/понижение за период, поэтому, когда Z = +2, кривая N'(Z) повышается на -0,1079968336. Эта ситуация показана на рисунке 3-13.
Последующие производные даются далее для справки. Они не будут использоваться в оставшейся части книги и представлены для полноты освещения темы:
В качестве последнего дополнения к сказанному о нормальном распределении стоит заметить, что на самом деле это распределение не такое остроконечное, как на графиках, представленных в данной главе. Реальная форма нормального распределения показана на рисунке 3-14. Отметьте, что здесь масштабы двух осей одинаковы, в то время как в других графических примерах они отличаются для придания более вытянутой формы.
Логарифмически нормальное распределение
Для торговли многие приложения требуют небольшой, но важной модификации нормального распределения.
Рисунок 3-13 N"(Z) дает наклон касательной к N'(Z) при Z = +2
Рисунок 3-14 Реальная форма нормального распределения
С помощью этой модификации нормальное распределение преобразуется в логарифмически нормальное распределение. Цена любого свободно котируемого инструмента имеет нулевое значение в качестве нижнего предела[13]. Поэтому когда цена этого инструмента падает и приближается к нулю, то, теоретически, цене инструмента должно быть все труднее понизиться. Рассмотрим некую акцию стоимостью 10 долларов. Если бы акция упала на 5 долларов до 5 долларов за акцию (50% понижение), то в соответствии с нормальным распределением она может также легко упасть с 5 долларов до 0 долларов. Однако при логарифмически нормальном распределении подобное падение на 50% с цены в 5 долларов за акцию до цены 2,50 долларов за акцию будет примерно таким же вероятным, как и падение с 10 долларов до 5 долларов за акцию.
Рисунок 3-15 Нормальное и логарифмически нормальное распределения
Логарифмически нормальное распределение, рисунок 3-15, работает точно так же, как и нормальное распределение, за тем исключением, что при логарифмически нормальном распределении мы имеем дело с процентными изменениями, а не абсолютными. Теперь рассмотрим движение вверх. В соответствии с логарифмически нормальным распределением движение с 10 долларов за акцию до 20 долларов за акцию аналогично движению с 5 долларов до 10 долларов за акцию, так как оба эти движения представляют повышение на 100%. Это не означает, что мы не будем использовать нормальное распределение. Мы просто познакомимся с логарифмически нормальным распределением, покажем его отличие от нормального (логарифмически нормальное распределение использует процентные, а не абсолютные изменения цены) и увидим, что обычно именно оно используется при обсуждении ценовых движений или в том случае, когда нормальное распределение ограничено снизу нулем. Для использования логарифмически нормального распределения необходимо преобразовывать данные, с которыми вы работаете, в натуральные логарифмы[14].

