- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Природа боится пустоты - Дмитрий Александрович Фёдоров
Шрифт:
Интервал:
Закладка:
ГЛАВА ДЕВЯТАЯ. ЦИРКУЛЬ И ЛИНЕЙКА
Математика древности
Первые числовые и геометрические понятия возникли еще в глубочайшей доисторической древности, однако понимание счета, порядка и протяжения развивалось крайне медленно. Первые представления о землемерии и о количествах предметов передавались из рода в род, постепенно преумножались и накапливались, но всегда оставались тайной немногих наиболее талантливых людей. Когда, спустя долгие века, сложился простейший арифметический аппарат, то люди уже не могли поверить, будто эти удивительные знания являются результатом труда многих предшествующих поколений их предков. Подобное естественное развитие событий казалось невероятным, а потому появление математической мудрости повсеместно приписывали участию богов. Лишь у эллинов в силу уже описанных социальных сдвигов возникло желание осмыслить процесс развития научных завоеваний. Именно с VI–V веков до нашей эры, когда греки начали проявлять особый интерес к теоретическим изысканиям, и следует начинать историю математики именно как науки.
Необходимо, конечно, уточнить, что соседние Вавилон и Египет (мы здесь вовсе не касаемся Индии и Китая) к тому моменту уже имели многовековую математическую традицию, которая, однако, носила в основном прикладной и эмпирический характер. Крупные централизованные государства не могли бы существовать без достаточного числа специалистов, способных успешно решать разнообразные задачи, возникающие при строительстве зданий или размежевании земельных наделов, при торговых сделках и распределении ресурсов, при учете рабочей силы и сборе податей, а также при составлении календаря. Социальный статус писцов, которые кроме грамоты были обучены еще и вычислительным приемам, всегда был достаточно высоким, хотя, конечно же, сильно зависел от личных талантов и родственных связей — понятно, что стать верховным жрецом (то есть советником государя или министром) удавалось далеко не каждому.
Вавилонская счетная техника и числовая запись были совершеннее египетских, а круг решаемых задач — несколько шире, но в обоих государствах расцвет математики приходится на первую половину II тысячелетия до нашей эры (как мы помним, это еще бронзовый век), когда имел место один из высоких подъемов человеческой культуры. Благоприятный климат, обильные урожаи и развитая торговля способствовали тому, что у людей в избытке имелось всякое, что требовалось измерить и сосчитать.
Главная особенность древневосточной математики, однако же, заключалась в том, что важным там считалось каким-либо способом отыскать или угадать верное решение задачи, чтобы затем изложить его в виде пошаговой инструкции. Правильность таких инструкций никак не доказывалась, а методов исследований не существовало. О числах не мыслили абстрактно, но всегда имели в виду конкретное количество хлебов или овец, поскольку всегда преследовался чисто материальный интерес. Почти все математические вопросы, рассматриваемые вавилонянами и египтянами, являлись сугубо вычислительными и сводились к составлению практической задачи с указанием способа решения и конкретного численного примера. Дошедшие до нас тексты являются собранием готовых рецептов: сначала сделай одно, а затем другое, сложи, удвой, образуй обратную величину — и ты получишь истинный ответ.
Вычисления в Египте и Вавилоне
Для ясности рассмотрим задачу №R52 из знаменитого египетского папируса Ахмеса — древнего учебного руководства, составленного в первой четверти второго тысячелетия до нашей эры. Текст задачи таков: «Какова площадь усеченного треугольника, если его высота 20 хет, основание 6 хет, а верхнее основание 4 хета? Сложите нижнее основание с верхним. Получите 10. Разделите 10 пополам. А затем 5 умножьте на 20. Помните, что 1 хет равен 100 локтей. Посчитайте ваш ответ».
Несложно понять, что под усеченным треугольником подразумевается трапеция, площадь которой египтяне определяли как произведение половины суммы оснований на высоту, то есть идентично современной школьной формуле. Впрочем, вычисление ответа само по себе являлось непростым делом, ведь в древнем Египте еще не знали таблицы умножения, а вместо нее применяли метод последовательного удвоения, поэтому даже относительно простые подсчеты получались достаточно громоздкими.
Предположим, что, как и в нашем случае, требовалось перемножить 20 на 5. Для этого сперва записывали вспомогательный ряд чисел, где каждое следующий член был вдвое больше предыдущего, например: 1, 2, 4, 8 и так далее. Затем составлялся второй ряд чисел — напротив единицы писалось наибольшее число из рассматриваемого произведения (в нашем примере это 20), а следующие члены ряда также получались удвоением предыдущего. Далее выбирались те числа из первого ряда, которые в сумме дают наименьший множитель, а искомое произведение получалось как сумма соответствующих членов из второго ряда. Выглядело это (с поправкой на то, что сами цифры, разумеется, записывались иначе) следующим образом:
✓…..1…..20
……..2…..40
✓…..4…..80
……..8…..160
…………….100
Поскольку 5 = 1 + 4, то 5 х 20 = 20 + 80 = 100.
Конечно, мы сейчас рассмотрели довольно простой и часто встречающийся вычислительный пример, поэтому хороший писец, наверняка, помнил ответ наизусть. Однако несложно убедиться, что описанный способ позволяет вполне успешно заменять умножение сложением и в намного более трудных случаях. Особенно, если учесть, что в конкретных задачах для удобства можно было начинать первый ряд не только с единицы, а с любого удобного числа. Отношения последующих членов ряда также выбиралось исходя из удобства счета.
Ни в одном сохранившемся папирусе, ни в одной расшифрованной клинописной табличке нет ничего похожего на доказательство правильности предлагаемых рецептов. Разумеется, египетские и вавилонские мудрецы должны были каким-то образом получить свои решения и убедиться, что они дают верный результат, однако, вероятно, используемые методы оставались профессиональной тайной узкой группы специалистов высочайшего класса. Лишь отдельные случайные намеки позволяют нам в редких случаях предположить, как был обнаружен тот или иной ответ. Так, например, иной раз мы встречаем в папирусах пояснения, что величину площади треугольника необходимо удвоить, чтобы сделать из него четырехугольник, а нахождение полусуммы оснований трапеции позволяет превратить ее в прямоугольник.
Обычные писцы не вникали в данные тонкости, а просто-напросто заучивали математические книги наизусть, полагая их священной истинной. Кроме того активно использовались всякого рода вспомогательные таблицы:

