- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев
Шрифт:
Интервал:
Закладка:
Слушатель: Нет. Не обсудили про качели.
Задача про качели.
Итак. Начнем с простого. Качели, которые устроены как палка и сидение (рис. 98). Какие у них устойчивые положения равновесия и почему?
Рис. 98. Почему эти качели не поддаются уравновешиванию?
Почему положение уравновешивания (рис. 99) не является устойчивым? Предположим, что качели чуть-чуть покачнулись от ветерка. Они перешли в следующее состояние: (рис. 99).
Рис. 99. Проследим-ка мы, что произошло с центром тяжести системы «доска+спинки».
Видно, что одно плечо рычага после поворота уменьшилось, а другое увеличилось. Поэтому качели наклонятся в сторону большего плеча. И это можно показать математически. Но не нужно. Это давным-давно уже сделано в механике, причем в виде общей и очень простой теоремы: чтобы жесткая система сохраняла равновесие, центр тяжести этой системы должен лежать ниже точки опоры.
А теперь рассмотрим ситуацию, когда у качелей вместо спинок есть держалки для ног (рис. 100).
Рис. 100. Центр тяжести ниже точки опоры.
Пусть опять подул ветерок, и качели наклонились. Опять изменились плечи, только увеличилось то плечо, которое сверху. Поэтому качели потянет вниз, обратно к горизонтальному состоянию равновесия. А дело в том, что теперь центр тяжести НИЖЕ точки опоры (сами поймите, почему).
Но самое интересное, почему качели без спинки и подножки всё равно находятся в наклоненном виде? Здесь и без теоремы ясно.
Дело в том, что у доски есть толщина. И когда качели наклоняются, одно плечо получается на маленький треугольничек больше, чем другое (см. рис. 101).
Рис. 101. Центр тяжести доски понизился.
Он-то и перевешивает качели в сторону.
* * *
А теперь — нерешенные проблемы школьной математики. Но прежде я хочу рассказать о том, как мыслят математики, как они решают задачи. Есть такой английский принцип: «Think out of the box», то есть «Подумай, не выглянуть ли за пределы исходного ящика». Давайте посмотрим, как он работает.
Задача:
На плоскости даны три различные по радиусам окружности, не пересекающиеся друг с другом. К каждой паре окружностей проведена пара внешних касательных, и отмечена точка их пересечения (см. рис. 102). Лежат ли три отмеченных точки на одной прямой?
Рис. 102. Рисунок-шутка. (Из-за нарочито небрежно нарисованных пар касательных читателю пытаются внушить НЕВЕРНЫЙ вывод о том, лежат ли точки пересечения пар касательных на одной прямой).
ОТВЕТ: точки пересечения касательных лежат на одной прямой.
А как же быть с рис. 102? Он что, нас обманывает? Да!!! С рисунками это часто бывает. Поэтому делать выводы надо не после беглого взгляда на рисунок, а после строгого математического доказательства (или строгого опровержения).
Доказательство состоит в следующем. Рассмотрим три полусферы, которые пересекаются нашей плоскостью по своим большим окружностям. Представьте себе 3 сферических купола большого, среднего и малого радиуса.
Эти 3 сферы сверху накрываются постепенно опускающейся вниз горизонтальной плоскостью, пока не произойдет касание самого большого купола. (Такая плоскость ровно одна.) Теперь (глядя на рис. 102 и мысленно выходя за пределы исходной плоскости) будем «вертеть» получившуюся плоскость до тех пор, пока она, оставаясь касательной к большому куполу, не коснется среднего купола; затем вертим ее дальше (не теряя точек касания с большим и средним куполом), пока она не коснется малого купола. Такая «трижды касательная плоскость» уже ровно одна (здесь надо предполагать, что центры окружностей не лежат на одной прямой). Так вот. После очень простых соображений становится очевидно, что наши отмеченные точки лежат в этой новой плоскости.
(ПОЯСНЕНИЕ. Считая, что рис. 102 нарисован не на плоскости, а в пространстве, содержащем исходную плоскость, представьте себе, что вместо пары внешних касательных мы нарисовали конус, внутри которого «спрятались» касающиеся этого конуса сферы. Таких конусов будет ТРИ. Вершина каждого из них находится (как нам подсказывает «пространственное воображение») как раз там, где находятся отмеченные в условии задачи точки.)
Но отмеченные точки также лежат и в исходной плоскости. Значит, они лежат на прямой пересечения этих плоскостей. Теорема доказана.
Я сейчас пояснил, как думают математики. Это задача никаким простым методом не решается без выхода в пространство. Выход в пространство решает ее в один ход. Так происходит с математикой. Идея — выйти за пределы того, что у вас дано. Математика — это выход за пределы. Все великие открытия, все великие доказательства связаны с покиданием пределов изученного, пределов данного и требуемого в задаче.
Нерешенные математические проблемы
Самая старая — из известных мне — нерешенная математическая проблема. Говорят, был такой в Сиракузах царь или вельможа, который занимался странным видом деятельности[25]. Он брал натуральное число. Если оно было четное, он делил его на 2, пока оно не станет нечетным. Например, если это было число 12, оно превращалось в 3.
12 → 6 → 3.
А вот когда оно становилось нечетным, он умножал его на 3 и прибавлял единицу. То есть 3 он превратил бы в число 10. А 10? Сначала в 5, потом в 16. 16 в 8, 4, 2, 1 и в итоге в 4.
12 → 6 → 3 → 10 → 5 → 16 → 8 → 4 → 2 → 1 → 4.
Как видите, мы сейчас пришли к циклу:
4 → 2 → 1 → 4 → 2 → 1 → 4 → 2 → 1…
Давайте возьмем еще какое-нибудь число. Скажем, 13 возьмем.
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 → 4.
Опять начинается такой же цикл.

