- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой
Шрифт:
Интервал:
Закладка:
Вожди Французской революции полагали, что следует ввести эгалитарную систему измерений, доступную всем. Галилей доказал, что период колебаний маятника зависит от его длины, а не от веса или размаха колебаний. Сначала предложили считать метром длину маятника, колеблющегося с периодом две секунды. Однако выяснилось, что период колебаний зависит еще и от силы тяжести, которая бывает разной в разных точках мира.
Тогда решили определить метр как одну десятимиллионную часть расстояния от полюса до экватора. Хотя в принципе измерить это расстояние мог кто угодно, вскоре стало ясно, что на практике такое определение неудобно. Измерить расстояние от полюса до экватора и привезти в Париж точный метр поручили двум ученым, Пьеру Мешену и Жану-Батисту Деламбру. Но, как понял еще Эратосфен, для этого было вовсе не обязательно измерять все расстояние. Двое ученых решили измерить расстояние между Дюнкерком и Барселоной – городами, находящимися приблизительно на одной и той же долготе. Затем они собирались вывести из результатов этих измерений расстояние от полюса до экватора – так же, как сделал Эратосфен.
Деламбр начал свой путь с севера, из Дюнкерка, а Мешен, которому был поручен южный участок, – из Барселоны. Они договорились встретиться посередине, в южнофранцузском городе Родезе[55]. Но как они вычисляли расстояния? Прежде всего им нужна была стандартная мера длины, которую оба использовали бы в своих измерениях. Но даже при наличии такой меры они не могли перекладывать такую линейку на всем пути от Дюнкерка до Барселоны.
Тут-то и пригодились возможности тригонометрии и треугольников. Деламбр поднялся на колокольню одной из церквей Дюнкерка и нашел на некотором расстоянии две другие возвышенные точки, которые могли служить двумя другими вершинами треугольника. Ему пришлось измерить расстояние от колокольни до одной из этих точек. Этой тяжелой работы было не избежать. Но после этого, используя измеренные величины двух углов треугольника, он мог вычислить длины двух других его сторон. Для измерения углов ему послужил прибор, который назывался повторительным кругом Борда. Он состоял из двух телескопов, установленных на общей оси, и шкалы для измерения угла между ними. Деламбр направил телескопы на две возвышенные точки, которые он видел с вершины колокольни, и просто записал величину угла между телескопами.
Переместившись в другую вершину треугольника, он измерил второй угол. Затем в игру вступила тригонометрия, позволившая ему найти длины двух недостающих сторон. Но по-настоящему хитроумный шаг был сделан после этого. Одна из этих сторон, длину которой Деламбр теперь знал, стала стороной нового треугольника, который он построил, выбрав следующую возвышенную точку, видную из двух точек, которые он выбрал с колокольни церкви в Дюнкерке. Длину одной из сторон этого нового треугольника он уже знал. Следовательно, чтобы вычислить еще неизвестные длины сторон нового треугольника, ему нужно было только измерить два угла при помощи повторительного круга Борда.
Рис. 4.3. Тригонометрия позволяет вычислить расстояние от C до A и B по известному расстоянию между точками A и B и углам a и b
Это был великолепный шорткат. Ученым, последовательно строившим треугольники на всем пути от Дюнкерка до Барселоны, нужно было измерить лишь одну-единственную сторону одного-единственного треугольника: после этого оставалось измерять только углы при вершинах. Триангуляция открывает поразительный шорткат к геодезическим съемкам. Можно измерять углы, удобно устроившись на возвышенностях, образующих вершины треугольников. Не нужно измерять расстояние шагами или мерными рейками.
Но и в подъеме на возвышенности и наблюдениях в телескопы были свои опасности. Время было не самым подходящим для проведения геодезических съемок с телескопами и прочими непонятными приборами. Вокруг бушевала революция. В ходе измерений, которые оба ученых проводили по всей Франции, поднимаясь на башни и залезая на деревья, на них неоднократно нападали местные жители, принимавшие их за шпионов. В Бель-Ассизе, к северу от Парижа[56], Деламбра арестовали по подозрению в шпионаже. Зачем еще ему понадобилось бы забираться на башни с такими странными приспособлениями? Он попытался объяснить, что занимается измерением размеров Земли по заданию Академии наук, но его перебил пьяный ополченец: «Нет больше никакой кадемии. Теперь все равны. Ну-ка пошли с нами». В конце концов, семь лет спустя, Деламбр и Мешен триумфально вернулись в Париж со своим метром.
Был отлит платиновый стержень, длина которого соответствовала результатам их расчетов, и начиная с 1799 года эталон метра хранился во французских архивах. Но и он в некотором смысле обладал тем же недостатком, что и ярд Генриха I. Хотя его определение было универсальным, ученым по-прежнему было проще съездить во Францию и снять с этого метра копию, которую затем можно было использовать для измерений, чем самостоятельно изменять расстояние от полюса до экватора.
От Лондона до Эдинбурга
Когда Деламбр и Мешен договаривались о месте встречи, было логично выбрать точку на полпути от Дюнкерка до Барселоны. Но как быть с 15 персонажами нашей головоломки, приведенной в начале этой главы? Где должны встретиться эти 15 человек, если пятеро из них находятся в Лондоне, а остальные десять – в Эдинбурге, и они хотят, чтобы суммарное расстояние, которое они проедут, было наименьшим? Как ни странно, им следует встретиться в Эдинбурге. На первый взгляд может показаться, что, раз соотношение численности этих групп равно 2 к 1, то и встретиться им следует в точке, соответствующей двум третям пути из Лондона в Эдинбург. Но каждая миля, которую шотландцы проезжают от Эдинбурга, прибавляет к общей сумме лишние 10 миль, а англичанам экономит всего 5.
В более общем случае, если эти 15 человек распределены случайным образом по всей линии Лондон – Эдинбург, шорткатом для всех них будет поехать в точку, в которой находится средний человек, восьмой, считая от Лондона (или от Эдинбурга). Исходя из того же принципа, отступление от восьмого человека на каждую милю дает одной группе экономию в 7 миль и добавляет другой лишние 7 миль пути (так что эти изменения взаимно сокращаются), но восьмой человек добавляет к общей сумме одну лишнюю милю.
Представим себе еще более общий случай: пусть 15 человек

