Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв
Шрифт:
Интервал:
Закладка:
Agic H., Moczydłowska M., Yin L.-M. (2015) Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shaanxi, China. Journal of Paleontology, 89, 28–50.
Arouri K. R., Greenwood P. F., Walter M. R. (2000) Biological affinities of Neoproterozoic acritarchs: microscopic and chemical characterisation. Organic Geochemistry, 31, 75–89.
Baum D. A., Baum B. (2014) An inside-out origin for the eukaryotic cell. BMC Biology, 12, 76. http://www.biomedcentral.com/1741–7007/12/76.
Berbee M. L. et al. (2020) Genomic and fossil windows into the secret lives of the most ancient fungi. Nature Reviews Microbiology, 18, 717–30.
Bomfleur B., McLoughlin S., Vajda V. (2014) Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns. Science, 343, 1376–7.
Bosak T., Macdonald F., Lahr D., Matys E. (2011) Putative Cryogenian ciliates from Mongolia. Geology, 39, 1123–6.
Burki F., Roger A. J., Brown M. W., Simpson A. G. B. (2020) The new tree of Eukaryotes. Trends in Ecology & Evolution, 35, 43–55.
Butterfield N. J. (2009) Modes of pre-Ediacaran multicellularity. Precambrian Research, 173, 201–11.
Butterfield N. J. (2015) Early evolution of the Eukaryota. Palaeontology, 58, 5–17.
Cohen P. A., Macdonald F. A. (2015) The Proterozoic record of eukaryotes. Paleobiology, 41, 610–32.
Cohen P. A., Riedman L. A. (2018) It’s protist-eat-protist world: recalcitrance, predation, and evolution in the Tonian-Cryogenian ocean. Emerging Topics in Life Sciences, 2, 173–80.
Cohen P. A., Schopf J. W., Butterfield N. J., Kudryavtsev A. B., Macdonald F. A. (2011) Phosphate biomineralization in mid-Neoproterozoic protists. Geology, 39, 539–42.
Cohen P. A. et al. (2017) Controlled hydroxyapatite biomineralization in an ~810 million-year-old unicellular eukaryote. Science Advances, 3, e1700095. DOI: 10.1126/sciadv.1700095.
Embley T. M., Martin W. (2006) Eukaryotic evolution, changes and challenges. Nature, 440, 623–30.
Eme L. et al. (2017) Archaea and the origin of eukaryotes. Microbiology, 15, 711–23.
Erickson H. P. (2016) The discovery of the prokaryotic cytoskeleton: 25th anniversary. Molecular Biology of the Cell, 28, 357–8.
Falcón L. I., Magallon S., Castillo A. (2012) Dating the cyanobacterial ancestor of the chloroplast. The ISME Journal, 4, 777–83.
Fedonkin M. A., Yochelson E. L. (2002) Middle Proterozoic (1.5 Ga) Horodyskia moniliformis Yochelson and Fedonkin, the oldest known tissue – grade colonial eukaryote. Smithsonian Contributions to Paleobiology, 94, 1–29.
Gargaud M., López-García P., Martin H., eds. (2011) Origins and Evolution of Life. An Astrobiological Perspective. Cambridge: Cambridge University Press.
Gawryluk R. M. R. et al. (2019) Non-photosynthetic predators are sister group to red algae. Nature, 572, 240–3.
Gibson T. M. et al. (2018) Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology, 46, 135–8.
Hehenberger E. et al. (2019) A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proceedings of the National Academy of Sciences of the USA, 116, 17934–42.
Imachi H. et al. (2020) Isolation of an archaeon at the prokaryote-eukaryote interface. Nature, 577, 519–25.
Javaux E. J. (2019) Challenges in evidencing the earliest traces of life. Nature, 572, 451–60.
Javaux E. J., Knoll A. H. (2017) Micropalaeontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. Journal of Paleontology, 91, 199–229.
Knoll A. H. (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspective Biology, 6, a016121. DOI: 10.1101/cshperspect.a016121.
Knoll A. H., Javaux E. J., Hewitt D., Cohen P. (2006) Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 1023–38.
Ku C. et al. (2015) Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes. Proceedings of the National Academy of Sciences of the USA, 112, 10139–46.
Kurland C. G., Andersson S. G. E. (2000) Origin and evolution of the mitochondrial proteome. Microbiology and Molecular Biology Review, 64, 786–820.
Lahr D. J. G. et al. (2019) Phylogenomics and morphological reconstruction of Arcellinida testate amoebae highlight diversity of microbial eukaryotes in the Neoproterozoic. Current Biology, 29, 1–11. DOI: 10.1016/j.cub.2019.01.078.
Lane N. (2017) Singular endosymbiosis or singular event at the origin of eukaryotes? Journal of Theoretical Biology, 434, 58–67.
Leonard G. et al. (2018) Comparative genomic analysis of the ‘pseudofungus’ Hyphochytrium catenoides. Open Biology, 8, 170184. DOI: 10.1098/rsob.170184.
López-García P., Moreira D. (2020) The Syntrophy hypothesis for the origin of eukaryotes revisited. Nature Microbiology, 5, 655–67.
Loron C. C. et al. (2018) Implications of selective predation on the macroevolution of eukaryotes: evidence from Arctic Canada. Emerging Topics in Life Sciences, 2, 247–55.
Loron C. C. et al. (2019) Early fungi from the Proterozoic era in Arctic Canada. Nature, 570, 232–5.
Marshall C. P., Javaux E. J., Knoll A. H., Walter M. R. (2005) Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to palaeobiology. Precambrian Research, 138, 208–24.
Martin W. F. et al. (2017) The physiology of phagocytosis in the context of mitochondrial origin. Microbiology and Molecular Biology Reviews, 81, e00008–7. DOI: 10.1128/MMBR.00008–7.
Melnikov S. et al. (2020) Archaeal ribosomal proteins possess nuclear localization signal-type motifs: Implications for the origin of the cell nucleus. Molecular Biology and Evolution, 37, 124–33.
Moczydłowska M., Landing E., Zang W., Palacios T. (2011) Proterozoic phytoplankton and timing of chlorophyte algae origins. Palaeontology, 54, 721–33.
Pang K. et al. (2013) The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology, 11, 499–510.
Payne J. L. et al. (2009) Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences of the USA, 106, 24–7.
Porter S. M. (2006) The Proterozoic fossil record of heterotrophic eukaryotes. In Neoproterozoic Geobiology and Paleobiology. Eds. S. Xiao, A. J. Kaufman. Dordrecht: Springer. P. 1–21.
Porter S. (2016) Tiny vampires in ancient seas: evidence for predation via perforation in fossils from 780–740 million-year-old Chuar Group, Grand Canyon, USA. Proceedings of the Royal Society of London B, 283, 20160221. DOI: 10.1098/rspb.2016.0221.
Roger A. J., Muñoz-Gómez S. A., Kamikawa R. (2017) The origin and diversification of mitochondria. Current Biology, 27, R1177–92.
Sergeev V. N., Knoll A. H., Grotzinger J. P. (1995) Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, northern Siberia. Journal