Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв
Шрифт:
Интервал:
Закладка:
Tang Q. et al. (2019) Spiculogenesis and biomineralization in early sponge animals. Nature Communications, 10, 3348. DOI: 10.1038/s41467-019-11297-4.
Uriz M.-J. (2006) Mineral skeletogenesis in sponges. Canadian Journal of Zoology, 84, 322–56.
Vacelet J. (1977) Une nouvelle relique du Secondaire: un représentant actuel des Eponges fossiles Sphinctozoaires. Comptes Rendus de l’Académie des Sciences, Séries D, 285, 509–11.
Vacelet J., Boury-Esnault N. (1995) Carnivorous sponges. Nature, 373, 333–5.
Voigt O. et al. (2017) Spicule formation in calcareous sponges: Coordinated expression of biomineralization genes and spicule-type specific genes. Scientific Reports, 7, 45658. DOI: 10.1038/srep45658.
Walcott C. D. (1920) Cambrian geology and paleontology IV. No. 6 Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections, 67, 261–364.
Weaver J. C. et al. (2007) Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Journal of Structural Biology, 158, 93–106.
Wörheide G. (2008) A hypercalcified sponge with soft relatives: Vaceletia is a keratose demosponge. Molecular Phylogenetics and Evolution, 47, 433–8.
Wu W., Zhu M., Steiner M. (2014) Composition and tiering of the Cambrian sponge communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 398, 86–96.
Zhuravlev A. Yu. (1986) Radiocyathids. In Problematic Fossil Taxa. Eds. A. Hoffman, M. H Nitecki. New York: Oxford University Press; Oxford: Clarendon Press. P. 35–44.
Zhuravlev A. Yu. (1989) Poriferan aspects of archaeocyathan skeletal function. Memoirs of the Association of Australasian Palaeontologists, 8, 387–99.
Zhuravlev A. Yu. (1993) A functional morphological approach to the biology of the Archaeocyatha. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190, 315–327.
Книдарии и гребневики
Журавлев A. Ю. Новый коралл из нижнего кембрия Сибири // Палеонтологический журнал. 1999. № 5. C. 27–33.
Марфенин Н. Н. Феномен колониальности. – М.: Изд-во МГУ, 1993.
Adler L., Röper M. (2012) Description of a new potential fossil hydromedusa Palaequorea rygoli and revision of the fossil medusa Hydrocraspedota mayri from the Plattenkalks of the Franconian Alb, Southern Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 264/3, 249–62.
Baliński A., Sun Y. (2017) Early Ordovician black corals from China. Bulletin of Geosciences, 92, 1–12.
Baliński A., Sun Y., Dzik J. (2014) Probable advanced hydroid from the Early Ordovician of China. Paläontologische Zeitschrift, 88, 1–10.
Bingham B. L., Dimond J. L., Muller-Parker G. (2014) Symbiotic state influences life-history of a clonal cnidarian. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140548. DOI: 10.1098/rspb.2014.0548.
Brinkman D., Burnell J. (2007) Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon, 50, 850–60.
Boschma H. (1951) Notes on Hydrocorallia. Zoologische Verhandelingen, 13, 1–49.
Buss L. W. et al. (2016) Control of hydroid colony form by surface heterogeneity. PLoS ONE, 11 (6), e0156249. DOI: 10.1371/journal.pone.0156249.
Carrera M. G., Astini R. A., Gomez F. J. (2018) A lowermost Ordovician tabulate-like coralomorph from the Precordillera of western Argentina: a main component of a reef-framework consortium. Journal of Paleontology, 91, 73–85.
Cartwright P., Nawrocki A. M. (2010) Colony evolution in hydrozoan. Integrative and Comparative Biology, 50, 456–72.
Cartwright P. et al. (2007) Exceptionally preserved jellyfishes from the Middle Cambrian. PLoS ONE, 2 (10), e1121. DOI: 10.1371/journal.pone.0001121.
Cartwright P. et al. (2018) New probable cnidarians fossil from the lower Cambrian of the Three Gorges area, South China, and their ecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 150–66.
Chatterton B. D. E., Copper P., Dixon O. A., Gibb S. (2008) Spicules in Silurian tabulate corals from Canada, and implications for their affinities. Palaeontology, 51, 173–98.
Chen J.-Y. et al. (2007) Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. Proceedings of the National Academy of Sciences of the USA, 104, 6289–92.
Collins A. G., Lieberman B. S. (2007) Exceptionally preserved jellyfishes from the Middle Cambrian. PLoS ONE, 2 (10), e1121. DOI: 10.1371/journal.pone.0001121.
Conway Morris S., Collins D. H. (1996) Middle Cambrian ctenophores from the Stephen Formation, British Columbia Canada. Proceedings of the Royal Society of London B: Biological Sciences, 351, 279–308.
Cope J. C. W. (2005) Octocorallian and hydroid fossils from the Lower Ordovician of Wales. Palaeontology, 48, 433–45.
Copper P. (1985) Fossilized polyps in 430-myr-old Favosites corals. Nature, 316, 142–4.
Coronado I., Pérez-Huerta A., Rodríguez S. 2013. Primary biogenic skeletal structures in Multithecopora (Tabulata, Pennsylvanian). Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 286–99.
Cortijo I. et al. (2015) Life history and autoecology of an Ediacaran index fossil: Development and dispersal of Cloudina. Gondwana Research, 28, 419–24.
Cuif J.-P. (1971) Structure et position systematique du genre Heterastridium Reuss 1865 (Hydrozoaire). Geobios, 4, 69–79.
Dixon O. A. (2010) Fossilized polyp remains in Silurian Heliolites (Anthozoa, Tabulata) from Nunavut, Arctic Canada. Lethaia, 43, 60–72.
Dzik J., Baliński A., Sun Y. (2017) The origin of tetraradial symmetry in cnidarians. Lethaia, 50, 306–21.
Ezaki Y. (2000) Palaeoecological and phylogenetic implications of a new scleractiniamorph genus from Permian sponge reefs, South China. Palaeontology, 43, 199–217.
Fuller M., Jenkins R. (2007) Reef corals from the Lower Cambrian of the Flinders Ranges, South Australia. Palaeontology, 50, 961–80.
Gutschick R. C., Rodriguez J. (1990) By-the-wind-sailors from a Late Devonian foreshore environment in western Montana. Journal of Paleontology, 64, 31–9.
Higuchi T., Shirai K., Mezaki T., Yuyama I. (2017) Temperature dependence of aragonite and calcite skeleton formation by a scleractinian coral in low mMg/Ca seawater. Geology, 45, 1087–90.
Hogler J. A., Hanger R. A. (1989) A new chondrophorine (Hydrozoa, Velellidae) from the Upper Triassic of Nevada. Journal of Paleontology, 63, 249–51.
Jakubowicz M. et al. (2015) Stable isotope signatures of middle Palaeozoic ahermatypic rugose corals – Deciphering secondary alteration, vital fractionation effects, and palaeoecological implications. PloS ONE, 10 (9), e0136289. DOI: 10.1371/journal.pone.0136289.
Johnson R. G., Richardson E. S., Jr. (1968) The Essex fauna and medusae. Fieldiana (Geology), 12, 109–15.
Kayal E. et al. (2018) Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evolutionary Biology, 18, 68. DOI: 10.1186/s12862-018-1142-0.
Kouchinsky A., Bengtson S. (2002) The tube wall of Cambrian anabaritids. Acta Palaeontologica Polonica, 47, 431–44.
Kozłowski R. (1959) Les hydroïdes ordoviciens à squelette chitineux. Acta Palaeontologica Polonica, 4, 209–71.
Leme J. M., Simões M. G., Marques A.