Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв
Шрифт:
Интервал:
Закладка:
Sergeev V. N., Knoll A. H., Vorob’eva N. G., Sergeeva N. D. (2016) Microfossils from the lower Mesoproterozoic Kaltasy Formation, East-European Platform. Precambrian Research, 278, 87–107.
Shalchian-Tabrizi K. et al. (2006) Telonemia, a new protist phylum with affinity to chromist lineages. Proceedings of the Royal Society of London B, 273, 1833–42.
Strother P. K. Battison L., Brasier M. D., Wellman C. H. (2011) Earth’s earliest non-marine eukaryotes. Nature, 473, 505–9.
Tang Q. et al. (2015) Organic-walled microfossils from the Tonian Gouchou Formation, Huaibei region, North China Craton, and their biostratigraphic implications. Precambrian Research, 266, 296–318.
Vafai S. B., Mootha V. K. (2012) Mitochondrial disorders as windows into an ancient organelle. Nature, 491, 374–83.
Villanueva L. et al. (2021) Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. The ISME Journal, 15, 168–82.
Zaremba-Niedzwiedzka K. et al. (2016) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 541, 353–8.
Zhu S. et al. (2016) Decimetre-scale multicellular eukaryotes from 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nature Communications, 7, 11500. DOI: 10.1038/ncomms11500.
Эдиакарские организмы
Животовский Б. Д. Программируемая гибель клеток – медицине // Химия и жизнь XXI век. 2014. № 5, 10–5.
Журавлев A. Ю. Ранняя история Metazoa – взгляд палеонтолога // Журнал общей биологии. 2014. Т. 75, № 6. C. 411–65.
Иванцов А. Ю. Новая реконструкция кимбереллы – проблематического вендского многоклеточного животного // Палеонтологический журнал. 2009. № 6. С. 3–12.
Иванцов А. Ю. Следы питания проартикулят – вендских многоклеточных животных // Палеонтологический журнал. 2011. № 3. С. 3–13.
Иванцов А. Ю. Реконструкция Charniodiscus yorgensis (макробиота венда Белого моря) // Палеонтологический журнал. 2016. № 1. С. 3–13.
Наймарк Е. Б., Иванцов А. Ю. Возрастная изменчивость поздневендских проблематик Parvancorina Glaessner // Палеонтологический журнал. 2009. Т. 43, № 1. С. 14–19.
Петрухин В. Я. Русь в IX–X веках. От призвания варягов до выбора веры. – М.: ФОРУМ; Неолит, 2013.
Федонкин М. А. Бесскелетная фауна венда и ее место в эволюции Metazoa. – М.: Наука, 1987. (Тр. ПИН АН СССР. Т. 226.)
Belahbib H. et al. (2018) New genomic data and analyses challenge the traditional vision of animal epithelium evolution. BMC Genomics, 19, 1. DOI: 10.1186/s12864-018-4715-9.
Bobrovskiy I. et al. (2019) Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science, 361, 1246–9.
Bonner J. T. (2006) Migration in Dictyostelium polycephalum. Mycologia, 98, 260–4.
Bowyer F., Wood R. A., Poulton S. W. (2017) Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective. Geobiology, 15, 516–51.
Brasier M. D., Antcliffe J. B. (2008) Dickinsonia from Ediacara: A new look at morphology and body construction. Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 311–23.
Brasier M. D., Antcliffe J. B. (2009) Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. Journal of the Geological Society of London, 166, 2, 363–84.
Brock D. A., Douglas T. E., Queller D. C., Strassmann J. E. (2011) Primitive agriculture in a social amoeba. Nature, 469, 393–6.
Brunet T. et al. (2018) Light-regulated collective contractility in a multicellular choanoflagellate. Science, 366, 326–34.
Butterfield N. J. (2020) Constructional and functional anatomy of Ediacaran rangeomorphs. Geological Magazine, First View, 1–12. DOI: 10.1017/S0016756820000734.
Chen L. et al. (2014) Cell differentiation and germ-soma separation in Ediacaran animal-like fossils. Nature, 516, 238–41.
Coutts F. J., Bradshaw C. J. A., García-Bellido D. C., Gehling J. G. (2018) Evidence of sensory-driven behavior in the Ediacaran organism Parvancorina: Implications and autecological interpretations. Gondwana Research, 55, 21–9.
Dong L. et al. (2008) Restudy of the worm-like carbonaceous compression fossils Protoarenicola, Pararenicola, and Sinosabellidites from early Neoproterozoic successions in North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 258, 138–61.
Droser M. L. et al. (2014) A new Ediacaran fossil with a novel sediment displacive habit. Journal of Paleontology, 88, 145–51.
Droser M. L. et al. (2019) Piecing together the puzzle of the Ediacaran biota: Excavation and reconstruction at the Ediacara National Heritage site Nilpena (South Australia). Palaeogeography, Palaeoclimatology, Palaeoecology, 513, 132–45.
Dudin O. et al. (2019) A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization. eLife, 8, e49801. DOI: 10.7554/eLife.49801.
Dunn F. S. et al. (2019) Anatomy of the Ediacaran rangeomorph Charnia masoni. Papers in Palaeontology, 5, 157–76.
Eichinger L. et al. (2005) The genome of the social amoeba Dictyostelium discoideum. Nature, 435, 43–57.
Gehling J. G., Narbonne G. M., Anderson M. M. (2000) The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology, 43, 427–56.
Ghisalberti M. et al. (2014) Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes. Current Biology, 24, 1–5. DOI: 10.1016/j.cub.2013.12.017.
Grazhdankin D. (2014) Patterns of evolution of the Ediacaran soft-bodied biota. Journal of Paleontology, 88, 269–83.
Grazhdankin D., Seilacher A. (2002) Underground Vendobionta from Namibia. Palaeontology, 45, 57–78.
Hehenberger E. et al. (2017) Novel predators reshape holozoan phylogeny and reveal the presence of a two-component signaling system in the ancestor of animals. Current Biology, 27, 2043–50.
Herron M. D. et al. (2019) De novo origins of multicellularity in response to predation. Scientific Reports, 9, 2328. DOI: 10.1038/s41598-019-39558-8.
Hoyal Cuthill J. F., Conway Morris S. (2014) Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan. Proceedings of the National Academy of Sciences of the USA, 111, 13122–6.
Ivantsov A. Yu. et al. (2016) Elucidating Ernietta: new insights from exceptional specimens in the Ediacaran of Namibia. Lethaia, 49, 540–54.
Ivantsov A. Yu., Nagovitsyn A. L., Zakrevskaya M. A. (2019) Traces of locomotion of Ediacaran macroorganisms. Geosciences, 9, 395. DOI: 10.3390/geosciences.9090395.
Ivantsov A., Zakrevskaya M., Nagovitsyn A. (2019) Morphology of integuments of the Precambrian animals, Proarticulata. Invertebrate Zoology, 16, 19–26.
Ivantsov A. et al. (2020) Intravital damage to the body of Dickinsonia (Metazoa of the late Ediacaran). Journal of Paleontology, 94, 1019–33.
Kenchington C. G., Dunn F. S., Wilby P. R. (2018) Modularity and overcompensatory growth in Ediacaran rangeomorphs demonstrate early adaptations for coping with environmental pressures. Current Biology, 28, 3330–6, e2.
Kolesnikov A. V. et al. (2018) The oldest skeletal macroscopic organism Palaeopascichnus linearis. Precambrian Research, 316, 24–37.
Kuzdal-Fick J. J., Foster K. R., Queller D. C., Strassmann J. E. (2007) Exploiting new