Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв
Шрифт:
Интервал:
Закладка:
Laflamme M., Xiao S., Kowalewski M. (2009) Osmotrophy in modular Ediacara organisms. Proceedings of the National Academy of Sciences of the USA, 1060, 14438–43.
Liu A. G. (2016) Framboidal pyrite should confirms the ‘death mask’ model for moldic preservation of Ediacaran soft-bodied organisms. Palaios, 31, 259–274.
Liu A. G., McIlroy D., Matthews J. J., Brasier M. D. (2012) A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland. Journal of the Geological Society of London, 169, 395–403.
Liu A. G., Dunn F. S. (2020) Filamentous connections between Ediacaran fronds. Current Biology, 30, 1322–8.
Luo C., Miao L. (2020) A Horodyskia-Nenoxites-dominated fossil assemblage from the Ediacaran-Cambrian transition (Liuchapo Formation, Hubei Province): Its paleontological implications and stratigraphic potential. Palaeogeography, Palaeoclimatology, Palaeoecology, 545, 109635. DOI: 10.1016/j.palaeo.2020.109635.
Mitchell E. G. et al. (2015) Reconstructing the reproductive mode of an Ediacaran macro-organism. Nature, 524, 343–6.
Mitchell E. G. et al. (2019) The importance of neutral over niche processes in structuring Ediacaran early animal communities. Ecology Letters, 22, 2028–38.
Mitchell E. G. et al. (2020) The influence of environmental setting on the community ecology of Ediacaran organisms. Interface Focus, 10, 20190109. DOI: 10.1098/rsfs.2019.0109.
Nagy L. G., Kovács G. M., Krizsán K. (2019) Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biological Reviews, 93, 1778–94.
Rahman I. A., Darroch S. A. F., Racicot R. A., Laflamme M. (2015) Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neopoterozoic ecosystems. Science Advances, 1, e1500800. DOI: 10.1126/sciadv.1500800.
Reid L. M., García-Bellido D. C., Gehling J. G. (2018) An Ediacaran opportunist? Characteristics of a juvenile Dickinsonia costata population from Crisp Gorge, South Australia. Journal of Paleontology, 92, 313–22.
Richter D. J., Fozouni P., Eisen M. B., King N. (2018) Gene family innovation, conservation and loss on the animal stem lineage. eLife, 7, e34226. DOI: 10.7554/eLife.34226.
Ros-Rocher N., Pérez-Posada A., Leger M. M., Ruiz-Trillo I. (2021) The origin of animals: an ancestral reconstruction of unicellular-to-multicellular transition. Open Biology, 11, 200359. DOI: 10.1098/rsob.200359.
Saran S. et al. (2002) cAMP signaling in Dictyostelium. Complexity of cAMP synthesis, degradation and detection. Journal of Muscle Research and Cell Motility, 23, 793–802.
Schaap P. (2007) Evolution of size and pattern in the social amoebas. BioEssays, 29, 635–44.
Seilacher A. (1992) Vendobionta and Psammocorallia: Lost constructions of the Precambrian evolution. Journal of the Geological Society of London, 149, 607–13.
Singer A., Plotnick R., Laflamme M. (2013) Experimental fluid mechanics of an Ediacaran frond. Palaeontologia Electronica, 15, 2 (19A), 1–14. https://palaeo-electronica.org/content/pdfs/297.pdf.
Slagter S. et al. (2021) Experimental evidence supports early silica cementation of the Ediacara Biota. Geology, 49, 51–5.
Sternfeld J., O’Mara R. (2005) Aerial migration of the Dictyostelium slug. Development, Growth & Differentiation, 47, 49–58.
Tendal O. S. (1972) A monograph of the Xenophyophoria. Galathea Reports, 12, 7–103.
Wallraff E., Wallraff H. G. (1997) Migrating and bidirectional phototaxis in Dictyostelium discoideum slugs lacking the action cross-linking 120 kDa gelation factor. Journal of Experimental Biology, 200, 3213–20.
Wan B. et al. (2020) A tale of three taphonomic modes: The Ediacaran fossil Flabellophyton preserved in limestone, black shale, and sandstone. Gondwana Research, 84, 296–314.
Wood R., Ivantsov A. Yu., Zhuravlev A. Yu. (2017) First macrobiota biomineralization was environmentally triggered. Proceedings of the Royal Society of London B, 284, 20170059. DOI: 10.1098/rspb.2017.0059.
Xiao S., Yuan X., Steiner M., Knoll A. H. (2002) Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China. Journal of Paleontology, 76, 347–76.
Xiao S. et al. (2005) A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences of the USA, 102, 10227–32.
Xiao S. et al. (2021) The Shibantan Lagerstätte: insights into the Proterozoic-Phanerozoic transition. Journal of Geological Society, 178. DOI: 10.1144/jgs2020–135.
Yin Z., Zhu M., Bottjer D. J., Zhao F., Tafforeau P. (2016) Meroblastic cleavage identifies some Ediacaran Doushantuo (China) embryo-like fossils as metazoans. Geology, 44, 735–738.
Yin Z. et al. (2017) Nuclei and nucleoli in embryo-like fossils from the Ediacaran Weng’an Biota. Precambrian Research, 301, 145–51.
Yin Z. et al. (2019) The early Ediacaran Caveasphaera foreshadows the evolutionary origin of animal-like embryology. Current Biology, 29, 4307–14, e2.
Zakrevskaya M. (2014) Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia). Palaeogeography, Palaeoclimatology, Palaeoecology, 410, 27–38.
Zhu M. et al. (2008) Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36, 867–70.
Zhuravlev A. Yu. (1993) Were Ediacaran Vendobionta multicellulars? Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190, 299–314.
Zhuravlev A. Yu., Gámez Vintaned J. A., Ivantsov A. Yu. (2009) First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin. Geological Magazine, 146, 775–80.
Губки
Журавлев A. Ю., Нитецкий M. Г. O сравнительной морфологии археоциат и рецептакулитов // Палеонтологический журнал. 1985. № 2. C. 121–123.
Alegado R. A. et al. (2012) A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife, 1, e00013. DOI: 10.7554/eLife.00013.
Alvarez B. et al. (2002) Systema Porifera: A Guide to the Classification of Sponges. New York: Kluwer Academic / Plenum Publishers.
Antcliffe J. B., Calloway R. H. T., Brasier M. D. (2014) Giving the early fossil record of sponges a squeeze. Biological Reviews, 89, 972–1004.
Arasuna A. et al. (2018) Structural characterization of the body frame and spicules of a glass sponge. Minerals, 8, 88. DOI: 10.3390/min8030088.
Bobrovskiy I. et al. (2021) Algal origin of sponge sterane biomarkers negates the oldest evidence for animals in the rock record. Nature Ecology & Evolution, 5, 165–8.
Borchiellini C. et al. (2001) Sponge paraphyly and the origin of Metazoa. Journal of Evolutionary Biology, 14, 171–9.
Botting J. P., Butterfield N. J. (2005) Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott. Proceedings of the National Academy of Sciences of the USA, 102, 1554–9.
Botting J. P., Muir L. A. (2018) Early sponge evolution: a review and phylogenetic framework. Palaeoworld, 27, 1–29.
Botting J. P., Muir L. A., Xiao S.,