- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Психология критического мышления - Дайана Халперн
Шрифт:
Интервал:
Закладка:
Давайте оставим искусственный пример с монетой и применим ту же логику в более полезном контексте. Я уверена, что любой студент когда-либо сталкивался с тестами с выбором вариантов, в которых нужно выбирать из предложенных вариантов правильные ответы. В большинстве таких тестов на каждый вопрос предлагается пять вариантов ответов, из которых правилен только один. Предположим, что вопросы настолько трудны, что вы можете только случайно угадать правильный ответ. Какова вероятность правильного угадывания при ответе на первый вопрос? Если вы понятия не имеете, какой из вариантов является правильным ответом, то вы с одинаковой вероятностью можете выбрать любой из пяти вариантов, предполагая, что любой из них может оказаться правильным. Поскольку сумма вероятностей выбора всех вариантов должна быть равна единице, то вероятность выбора каждого из вариантов при равновероятности всех вариантов равна 0,20. Один из вариантов правильный, а остальные – неправильные, поэтому вероятность выбора правильного варианта равна 0,20. Древовидная диаграмма этой ситуации изображена ниже.
Какова вероятность правильно угадать ответы на первые два вопроса теста? Нам придется добавить новые ветви к дереву, которое вскоре станет очень густым. Чтобы сэкономить место и упростить вычисления, можно представить все неправильные варианты в виде одной ветви, обозначенной «неправильные». Вероятность ошибиться при ответе на один вопрос равна 0,8.
Вероятность правильно угадать ответы на два вопроса равна 0,2 х 0,2 = 0,04. То есть случайно это может произойти только в 4% попыток. Допустим, что мы расширим наш пример до трех вопросов. Я не буду рисовать дерево, но вы должны уже понять, что вероятность равна 0,2 х 0,2 х 0,2 = 0,008. Это настолько необычное событие, что оно может произойти случайно менее чем в 1 % попыток. Что вы подумаете о человеке, которому удалось правильно ответить на все три вопроса? Большинство людей (а преподаватели тоже люди) заключит, что студент не выбирал ответы наугад, а действительно что-то знал. Конечно, не исключено, что ему просто повезло, но это чрезвычайно маловероятно. Таким образом, мы приходим к выводу, что полученный результат не может объясняться только удачей.
Мне хотелось бы отметить одну любопытную сторону таких рассуждений. Рассмотрим плачевную ситуацию, в которую попала Сара. Она отвечала на 15 вопросов теста, где ответ на каждый вопрос надо было выбирать из пяти вариантов. Сара ответила неправильно на все 15 вопросов. Можете ли вы определить вероятность того, что это произошло случайно? Я не буду рисовать древовидную диаграмму для иллюстрации этой ситуации, но легко видеть, что вероятность ошибиться при ответе на один вопрос равна 0,8; поэтому вероятность неправильно ответить на все 15 вопросов равна 0,815. Это число 0,8, умноженное само на себя 15 раз, в результате чего получается 0,0352. Поскольку вероятность такой случайности равна 3,52%, может быть, Саре стоит заявить преподавателю, что такой необычный результат не может объясняться случайностью? Сара, конечно, может привести подобный довод, но поверили бы вы ей на месте преподавателя? Предположим, она утверждает, что знала ответы на все вопросы. Как иначе она смогла бы не выбрать правильный вариант ответа в 15 вопросах подряд? Я не знаю, сколько преподавателей поверили бы ее утверждению, что 15 неверных ответов доказывают наличие у нее знаний, хотя в принципе такой ход рассуждений используется для доказательства наличия знаний, поскольку вероятность правильно угадать все ответы примерно такая же. (В этом примере вероятность наугад ответить правильно на все 15 вопросов равна 0,2015; это число значительно меньше 0,0001.) Если бы преподавателем Сары была я, то я бы поставила ей высокие оценки за творческий подход и понимание статистических принципов. Не исключено, что Сара действительно что-то знала на эту тему, но в этом «чем-то» была систематическая ошибка. Я бы также указала ей на то, что, возможно, она не подготовилась к тесту, а вдобавок ей еще и не повезло, и она сделала 15 неверных догадок. В конце концов, иногда случаются и очень необычные события.
Перед тем как перейти к чтению следующего раздела, проверьте, понимаете ли вы, как применять древовидные диаграммы для расчета вероятностей и учета всех возможных исходов. В этой главе я еще вернусь к таким диаграммам. Когда вы научитесь их использовать, вы будете удивлены, как много существует ситуаций, в которых они могут применяться.
Ошибка при конъюнкции – применение правила «и»
Тверски и Канеман (Tversky Kahneman, 1983) составили следующую задачу.
Линде 31 год, она откровенный и прямой человек и очень способна. В колледже она выбрала в качестве основного предмета философию. Когда она была студенткой, ее волновали проблемы расовой дискриминации и социальной справедливости; кроме того, она участвовала в антиядерных демонстрациях.
Для каждого из следующих утверждений укажите вероятность того, что это утверждение служит описанием Линды.
A. Линда работает учительницей в начальной школе.
Б. Линда работает в книжном магазине и занимается йогой.
B. Линда активно участвует в движении феминисток.
Г. Линда работает социальным психиатром.
Д. Линда является членом Лиги женщин-избирателей.
Е. Линда работает кассиром в банке.
Ж. Линда работает страховым агентом.
З. Линда работает кассиром в банке и активно участвует в движении феминисток.
Теперь прекратите чтение и оцените вероятность истинности каждого из утверждений (р. 297).
Этот небольшой отрывок про Линду был написан в качестве характерного описания активной феминистки, чему соответствует утверждение В. Таким образом, если воспользоваться распространенным стереотипом «типичной феминистки», то правдоподобным описанием является В. Обратите внимание на утверждения Е (кассир) и 3 (феминистка и кассир). Как вы оценили вероятность истинности этих утверждений? Большинство людей считает, что истинность 3 более вероятна, чем истинность Е. Понимаете ли вы, что Е должно быть более вероятным утверждением, чем 3, если быть кассиром в банке и быть феминисткой – события независимые? Бывают кассиры, которые не принимают активного участия в феминистском движении. При определении вероятности совместного появления двух событий вы перемножаете вероятности их появления по отдельности (правило «и»). Таким образом, вероятность совместного появления этих событий должна быть меньше, чем вероятность каждого из этих событий. В исследовании Тверски и Канемана (Tversky Kahneman, 1983) 85% субъектов оценили вероятность истинности утверждения 3 выше, чем Е. Ошибка, возникающая, когда люди считают, что совместное появление двух событий более вероятно, чем появление одного из них, называется ошибкой конъюнкции.
Для тех читателей, которым легче воспринимать пространственную информацию, давайте представим задачу в виде круговых диаграмм – такая форма представления использовалась при рассмотрении силлогизмов в главе о рассуждениях. Пусть один круг представляет всех на свете банковских кассиров, а другой – всех феминисток. Эти два круга должны наложиться друг на друга, потому что некоторые банковские кассиры являются одновременно феминистками. На рис. 7.3 область пересечения кругов заштрихована. Как видно из рис. 7.3, заштрихованная область, которая представляет всех людей, одновременно являющихся кассирами и феминистками, должна быть меньше, чем круг, представляющий всех кассиров, потому что существуют кассиры, которые не являются феминистками.
Теперь, когда вы поняли, в чем заключается ошибка конъюнкции, попробуйте ответить на другой вопрос (также взятый из работы Tversky Kahneman, 1983):
В Британской Колумбии проводилось обследование здоровья мужчин из выборки, где были представлены все возрастные группы и профессии.
Пожалуйста, приведите свои оценочные значения следующих величин:
Какова процентная доля обследованных мужчин, которые перенесли один или более инфарктов?
Рис. 7.3. Два круга представляют «всех феминисток» и «всех банковских кассиров».
Пересечение этих двух кругов представляет тех людей, которые одновременно являются феминистками и банковскими кассирами. Поскольку существуют феминистки, которые не работают кассирами, и кассиры, которые не являются феминистками, область пересечения кругов должна быть меньше, чем каждый из них в отдельности.
Какова процентная доля обследованных мужчин в возрасте старше 55 лет, которые перенесли один или более инфарктов? (р. 308)
Теперь прекратите чтение и вставьте на пропущенные места свои оценочные цифры.
Более 65% респондентов считали, что процентная доля мужчин, которые старше 55 лет и перенесли инфаркт, будет больше, чем процент всех мужчин, которые перенесли инфаркт. Вы заметили, что это еще один пример ошибки конъюнкции? Вероятность совместного появления двух случайных событий не может быть выше, чем вероятность появления только одного из них.

