- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Психология критического мышления - Дайана Халперн
Шрифт:
Интервал:
Закладка:
Даже если вы сначала думали иначе, лучше выбрать вторую ставку, поскольку вероятность выпадения семь очков относительно высока. Это объясняется тем, что существует шесть сочетаний, которые в сумме дают семь очков.
Существует игра, основанная на принципе, что чем больше имеется способов, которыми может произойти событие, тем выше его вероятность. Предположим, что в одной комнате собрались 40 человек, составляющих случайную выборку. Оцените вероятность того, что среди них окажутся два человека, у которых дни рождения совпадают. Возможно, вы удивитесь, узнав, что эта вероятность равна приблизительно 0,90. Вы понимаете, почему она такая высокая? Существует очень много способов совпадения дней рождения у сорока человек. Чтобы точно рассчитать эту вероятность, надо подсчитать количество всех возможных сочетаний из сорока человек по два. Таким образом, нам придется начать с сочетания первого человека со вторым, первого с третьим и т. д., пока не дойдем до первого с сороковым; затем начнем считать сочетания второго человека с третьим второго с четвертым и т.д., пока не дойдем до сочетания второго с сороковым. Этот процесс мы будем повторять до тех пор, пока каждый из сорока человек не побывает в паре с любым из остальных. Поскольку существует так много возможных пар людей, у которых могут совпадать дни рождения, то такое «совпадение» более вероятно, чем могло показаться сначала. Вероятность совпадения чьих-нибудь дней рождения превышает 0,50 для 23 человек и превышает 0,75 для 32 человек (Loftus Loftus, 1982). Вы можете воспользоваться этими знаниями, чтобы держать пари на вечеринках или любых других собраниях людей. Лучше всего, если количество людей близко к 40. Большинству людей трудно поверить, что вероятность совпадения дней рождения настолько высока.
Вы можете также воспользоваться своими знаниями по теории вероятностей для того, чтобы повысить свои шансы на успех в некоторых ситуациях. Возьмем, к примеру, Аарона и Джилл, которые спорили из-за того, кому из них выносить мусор. Их мама согласилась помочь им уладить разногласия, назвав наугад число от одного до 10. Тот из них, чье число окажется ближе к числу, названному мамой, победит в споре. Аарон был первым и назвал число «три». Какое число должна назвать Джилл, чтобы иметь максимальные шансы на победу? Прекратите чтение и подумайте, какое число ей следует выбрать.
Джилл лучше всего выбрать число «четыре». Если мама назовет любое число, большее трех, то эта стратегия принесет Джилл победу. Таким образом, она может увеличить вероятность выигрыша в ситуации, которая кажется зависящей только от случая.
Субъективная вероятность
Обычно мы не имеем дела с известными или объективными вероятностями, такими как вероятность дождя в какой-либо день или вероятность возникновения болезней сердца при приеме противозачаточных таблеток. Тем не менее, мы ежедневно принимаем решения на основе собственных оценок вероятности различных событий. Субъективной вероятностью называют личные оценки вероятности событий. Такой термин введен для отличия наших оценок от объективной вероятности, под которой понимают суждение о вероятности события, рассчитанное математическим путем на основе известных данных о частоте его появления. Психологи, исследовавшие субъективные вероятности, обнаружили, что человеческие суждения о вероятностях часто бывают ошибочными, но, тем не менее мы руководствуемся ими при принятии решений во многих ситуациях.
Ошибка игрока
На ярмарках, в казино, в парках и в телевизионных шоу пользуется популярностью игра под названием «Колесо Фортуны». Имеется большое колесо, которое можно вращать. Колесо разделено на множество пронумерованных секторов, как колесо рулетки. Резиновый указатель показывает, какой номер выиграл.
Предположим, что ваша подруга Ванда решила подойти к «Колесу Фортуны» с научной точки зрения. Она села рядом с колесом и стала записывать все выигравшие номера. Допустим, что Ванда записала следующий набор чисел: 3, 6, 10, 19, 18, 4, 1, 7,7,5,20, 17,2, 14, 19, 13,8, 11, 13, 16, 12, 15, 19, 3, 8. После тщательного изучения этих чисел она заявила, что при последних 25 запусках колеса ни разу не выпадало число «девять»; она собирается поставить крупную сумму на «девять», так как теперь вероятность появления этого числа значительно возросла. Согласны ли вы с тем, что это надежная ставка? Если вы ответили «да», то совершили ошибку, которая очень часто встречается при изучении законов вероятности. «Колесо Фортуны» не обладает памятью и «не помнит», какие номера только что выиграли. Если колесо сконструировано таким образом, что выигрыш любого номера имеет одинаковую вероятность, то выпадение «девятки» равновероятно при каждом запуске колесе, независимо от того, часто или редко это число выпадало в прошлом. Люди верят, что случайные процессы, такие как вращение колеса, должны самокорректироваться таким образом, что если событие какое-то время не происходило, то вероятность его появления увеличивается. Такие неверные представления носят название ошибки игрока.
Ошибку игрока можно обнаружить во многих ситуациях. Рассмотрим пример из области спорта. Иногда считают, что если игроку в бейсболе долго не удается ударить, то повышается вероятность того, что к нему придет мяч, потому что ему «полагается» удар. Один мой друг, большой любитель спорта, рассказал мне следующую историю о Доне Саттоне, бывшем подающем игроке из команды «Доджерс». В один из сезонов Саттон проиграл очень много пробежек. Он предсказывал, что за этим «спадом» в игре последует «коррекция», и он закончит сезон с обычным для себя средним результатом. К сожалению, случайные факторы не подвергаются коррекции, и, начав сезон плохо, он закончил его с результатом ниже своего обычного среднего уровня. Часто люди продолжают совершать «ошибку игрока» даже после того, как им объяснили, в чем она заключается. Студенты рассказывали мне, что хотя на интеллектуальном уровне они могут понять, что совершают «ошибку игрока», на интуитивном уровне они «нутром» чувствуют, что «так и должно быть». Для понимания законов вероятностей нередко нужно отказаться от своих интуитивных предчувствий, поскольку они часто бывают неверными. Давайте рассмотрим другой пример.
У Уэйна и Марши четыре сына. Хотя они вообще-то не хотят иметь пятерых детей, обоим всегда хотелось иметь дочку. Следует ли им планировать завести еще одного ребенка, поскольку сейчас, при условии, что первые их четверо детей – все мальчики, рождение дочери более вероятно? Если вы поняли, в чем заключается «ошибка игрока», то вы признаете, что при пятой попытке, так же как и при каждой из первых четырех, рождение дочери так же вероятно, как и рождение сына. (На самом деле из-за того, что мальчиков рождается чуть больше, чем девочек, вероятность рождения мальчика несколько выше, чем вероятность рождения девочки.)
У «ошибки игрока» существует и оборотная сторона – некоторые убеждены, что события происходят полосами. Рассмотрите следующие два варианта.
А. Баскетболистка совершила 2 или 3 последних броска мимо кольца. Она собирается бросать снова. Б. Баскетболистка 2 или 3 раза подряд попала в кольцо. Она собирается бросать снова.
В каком случае вероятность попадания больше – в случае А или в случае Б?
Джилович (Gilovich, 1991) задавал подобные вопросы опытным баскетбольным болельщикам и обнаружил, что 91% из них верит, что вероятность попадания выше в случае Б по сравнению со случаем А. Другими словами, они верят, что игрокам везет «полосами». Чтобы выяснить, существуют ли данные, подтверждающие веру в «полосы», Джилович проанализировал статистические данные по играм филадельфийской баскетбольной команды. Вот что он выяснил:
• Если игрок только что попал в кольцо, 51 % следующих бросков был успешным.
• Если игрок только что промахнулся мимо кольца, 54% следующих бросков были успешными.
• Если игрок только что попал в кольцо два раза подряд, 50% следующих бросков были успешными.
• Если игрок только что промахнулся два раза подряд, 53% следующих бросков были успешными.
Эти данные не подтверждают того, что баскетболисты совершают броски «полосами». Тем не менее интервью с самими баскетболистами показало их веру в то, что успешные и неудачные броски идут «полосами». Очень трудно убедить людей в том, что случай – это просто случай; он не корректирует сам себя и не распределяет результаты «полосами».
Игнорирование базового уровня
Чарли очень хочется первый раз в жизни поцеловать девушку. Если он пригласит Луизу пойти с ним в кино, то он только на 10% уверен, что она примет его приглашение. Зато если она пойдет с ним в кино, он на 95% уверен, что на прощание она его поцелует. Каковы шансы Чарли получить поцелуй?

