- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Психология критического мышления - Дайана Халперн
Шрифт:
Интервал:
Закладка:
Предположим, вы прочитали, что риск развития болезней сердца у потребителей оральных противозачаточных средств в 10,5 раз больше, чем у тех, кто ими не пользуется. Из такой информации большинство людей сделает вывод, что оральные контрацептивы связаны с существенным риском развития сердечных болезней. Предположим теперь, что вам сообщили, что только у 3,5 женщин из 100 000 потребителей возникают сердечные заболевания. Вы, вероятно, поймете из этой фразы, что применение оральных противозачаточных средств связано с небольшим риском. Рассмотрите «оборотную сторону» этой информации и подумайте, как бы вы оценили безопасность лекарства, если бы прочитали, что у 99 996,5 женщин из 100 000 потребителей не возникнут заболевания сердца. Не кажется ли вам, что это звучит безопаснее? Еще один способ представления той же самой информации – это перевести ее в проценты. Существует лишь 0,0035% вероятности, что у потребителей оральных контрацептивов возникнут болезни сердца. Большинство женщин теперь сочтет риск, связанный с приемом противозачаточных таблеток, незначительным.
Какое из этих утверждений правильно? Все. Единственное отличие между ними – это способ представления статистической информации, а различные способы представления статистической информации приводят к сильно отличающимся оценкам безопасности (Halpern et al., 1989). При интерпретации статистической информации важно иметь это в виду. Появилась тенденция обеспечивать потребителей статистической информацией о риске, чтобы они могли выносить компетентные суждения на самые разные темы – от лечения определенного вида рака до безопасности ядерной энергии. Хотя тема риска в этой главе будет рассмотрена подробнее, имейте в виду, что лучший способ понять смысл вероятностной величины риска – это выписать все эквивалентные математические значения (например, X из У случаев; риск возрастает во столько-то раз; количество смертельных исходов; количество людей, которые не умрут). Когда одновременно необходимо сравнить большое количество значений, полезно воспользоваться наглядным представлением сравнительных рисков. Во всех главах своей книги, как вы заметили, я рекомендую использование пространственного представления информации (например, круговых диаграмм при интерпретации силлогизмов; графических организаторов для понимания сложных текстов; древовидных схем для принятия разумных решений). Одним из преимуществ, которые это дает, является уменьшение нагрузки на память и возможность наглядно рассматривать несколько различных вариантов.
Игры, основанные на случайности
Америка – страна людей, которые любят играть в различные игры. От Лас-Вегаса до Атлантик-Сити, во всех больших и маленьких городах, расположенных между ними, люди тратят огромное количество времени и денег, играя в игры, где все зависит от случая и искусства игрока. Многие люди только тогда серьезно задумываются о вероятностях, когда играют в азартные игры.
Карты
Игра в карты – повсеместное времяпрепровождение; маленькие дети играют в «дурака» и «пьяницу», а взрослые – в преферанс, бридж, покер, очко и многие другие игры – всех не перечислить. Неопределенность, присущая самой природе игры в карты, делает эту игру еще приятнее (хотя дружеская компания и пиво с солеными сухариками тоже играют свою роль).
Хорошие игроки, независимо от того, в какую игру они играют, понимают и используют законы вероятностей. Давайте рассмотрим определение вероятности применительно к игре в карты. Например, какова вероятность вытянуть наугад туза пик из полной колоды, в которой 52 карты? Вероятность этого события равна 1/52, или примерно 2%, поскольку существует только 1 туз пик и 52 возможных исхода. Какова вероятность вытянуть туза любой масти из полной колоды карт? Если вы до сих пор следили за изложением материала в этой главе, то понимаете, что ответ равен 4/52, или примерно 8%, поскольку в колоде из 52 карт имеется 4 туза.
Несмотря на то, что некоторые профессиональные картежники утверждают, что им удалось разработать систему, которая помогает им увеличить свои шансы на выигрыш, в большинстве карточных игр невозможно «обмануть случай», как бы искусен ни был игрок. Трудно сказать, до какой степени правдивы рассказы об удачливых игроках в карты. Профессиональные игроки часто любят хвастаться своими победами и с готовностью забывают о тех случаях, когда они проигрывали. Более того, многие из самозваных экспертов по карточным играм продают свои «беспроигрышные системы». Надеюсь, что вы помните из материала глав, посвященных рассуждениям и анализу аргументации, что когда «эксперт» получает выгоду от продажи товара, его мнение становится сомнительным.
По данным Гюнтер (Gunther, 1977), Вере Неттик (реальное лицо) очень повезло. При игре в бридж к ней на руки пришли все 13 бубновых карт. Затаив дыхание, она выиграла большой шлем, имея на руках набор карт, который приходит лишь раз в жизни. Любой статистик немедленно укажет на то, что каждая возможная комбинация карт рано или поздно окажется у кого-то на руках. Поэтому комбинация, доставшаяся этой женщине, не более необычна, чем любая другая, хотя, конечно, она более запоминающаяся. Гюнтер (Gunther, 1977) произвел следующие расчеты.
Рис. 7.2. Какую из этих двух комбинаций карт вы можете с большей вероятностью получить при сдаче хорошо перетасованной колоды карт?
Существует приблизительно 635 миллиардов возможных комбинаций карт, которые может получить игрок при игре в бридж. Из этих комбинаций восемь можно считать «идеальными», хотя некоторые из них лучше других. Начнем с того, что существует четыре идеальных бескозырных комбинаций. Это сочетание всех четырех тузов, всех четырех королей, всех четырех дам и одного из четырех валетов. Любая из этих четырех комбинаций несомненно идеальна, поскольку все взятки ваши. Чуть менее идеальны, в порядке убывания, комбинации, содержащие все пики, все черви, все бубны и все трефы. Если из 635 миллиардов комбинаций идеальными являются 8, то статистическая вероятность говорит о том, что такая комбинация может появиться в одной из примерно 79 миллиардов попыток. Теперь остается лишь прикинуть, сколько раз американцы ежегодно играют в бридж и сколько раз раздаются карты при каждой игре. При использовании довольно умеренных оценок получается, что в США идеальная комбинация карт приходит на руки к удачливому игроку в бридж примерно один раз в три или четыре года (р. 30).
На самом деле Гюнтер приводит заниженные цифры, поскольку новые колоды карт сложены по мастям в восходящем порядке, так что одно или два «идеальных» тасования могут привести к «идеальному» для бриджа раскладу (Alcock, 1981). («Идеальное» тасование происходит тогда, когда после снятия колоды карты при тасовании ложатся через одну из каждой половины.) И, конечно, при этих вычислениях не учитывалась возможность мошенничества, которое изменяет значение вероятности, поскольку все возможные комбинации карт перестают быть равновероятными. Рассмотрите две комбинации карт, изображенные на рис. 7.2. Если карты раздаются случайным образом, то равновероятны все возможные их комбинации. Эта тема также обсуждается в главе 8.
Рулетка
Рулетку часто считают аристократической игрой. Странно, что она завоевала такую репутацию, поскольку эта игра основана на чистой случайности. В отличие от большинства карточных игр, искусства игры в рулетку не существует. Как вам, вероятно, известно, при игре в рулетку маленький шарик катится по круглому колесу с пронумерованными разноцветными ячейками. Существует 18 красных ячеек, 18 черных и 2 зеленые. Игроки могут делать различные ставки. Можно поставить на то, что шарик попадет в красную ячейку. Какова вероятность этого события при условии, что вероятность попадания шарика в любую ячейку одинакова? Красными являются 18 из 38 ячеек (количество возможных исходов); поэтому вероятность попадания шарика в красную ячейку равна 18/38. Поскольку это число меньше, чем 0,5, мы понимаем, что шарик будет останавливаться в красной ячейке несколько реже, чем в половине случаев. Таким образом, если вы будете постоянно ставить на красное, вы будете проигрывать немного чаще, чем выигрывать. Предположим теперь, что вы ставите на черное. Вероятность выигрыша опять будет равна 18/38; и опять-таки, если вы будете все время ставить на черное, вы будете проигрывать чаще, чем выигрывать. Конечно, играя в рулетку, вы будете иногда выигрывать, а иногда проигрывать, но после многих ставок – в достаточно протяженном интервале времени – вы проиграете.
Шансы или вероятность выигрыша в любом казино всегда распределяются в пользу «хозяев», иначе казино не получали бы прибыли. Тем не менее, одному человеку удалось «обыграть хозяев» в рулетку. Одним из людей, которых я очень уважаю, является Эл Гиббс, ученый, известный своими работами в Лаборатории реактивного движения в Пасадене, штат Калифорния, где выполняются многие работы по программе космических исследований США. Когда он был студентом, он воспользовался своими знаниями теории вероятностей и, играя в рулетку в клубе «Пионер» в Рено, увеличил свое состояние со 125 долларов до $6300. Вот как он это сделал: Гиббс знал, что, несмотря на то, что выпадение любого номера при игре в рулетку равновероятно, все устройства, сделанные руками человека, имеют недостатки. Из-за этого некоторые номера выпадают чаще других. Чтобы определить номера, которые выпадали чаще других, Гиббс вместе со своим другом записал результаты 100 000 запусков рулетки. На эти номера они и стали ставить. К сожалению, никто из нас не сможет повторить его успех, потому что с тех пор колеса стали ежедневно разбирать и собирать заново из других частей. Поэтому, несмотря на то, что каждое колесо остается неидеальным, каждый день его несовершенства меняются.

