Психология критического мышления - Дайана Халперн
Шрифт:
Интервал:
Закладка:
Шансы или вероятность выигрыша в любом казино всегда распределяются в пользу «хозяев», иначе казино не получали бы прибыли. Тем не менее, одному человеку удалось «обыграть хозяев» в рулетку. Одним из людей, которых я очень уважаю, является Эл Гиббс, ученый, известный своими работами в Лаборатории реактивного движения в Пасадене, штат Калифорния, где выполняются многие работы по программе космических исследований США. Когда он был студентом, он воспользовался своими знаниями теории вероятностей и, играя в рулетку в клубе «Пионер» в Рено, увеличил свое состояние со 125 долларов до $6300. Вот как он это сделал: Гиббс знал, что, несмотря на то, что выпадение любого номера при игре в рулетку равновероятно, все устройства, сделанные руками человека, имеют недостатки. Из-за этого некоторые номера выпадают чаще других. Чтобы определить номера, которые выпадали чаще других, Гиббс вместе со своим другом записал результаты 100 000 запусков рулетки. На эти номера они и стали ставить. К сожалению, никто из нас не сможет повторить его успех, потому что с тех пор колеса стали ежедневно разбирать и собирать заново из других частей. Поэтому, несмотря на то, что каждое колесо остается неидеальным, каждый день его несовершенства меняются.
Вычисление вероятности событий с несколькими возможными исходами
Нас часто интересует вероятность одновременного наступления нескольких событий, например выпадения двух орлов при двух бросках монеты или по крайней мере одной шестерки при двух бросках игральной кости. Ситуации такого рода называются ситуациями с несколькими возможными исходами.
Использование древовидных диаграмм
Хотя довольно легко понять, что вероятность выпадения орла при одном броске «честной» монеты равна ?, интуитивно определить вероятность выпадения четырех орлов при четырех бросках «честной» монеты несколько труднее. Хотя пример с монетой может показаться искусственным, он хорошо подходит для объяснения сочетания вероятностей при нескольких попытках. Давайте произведем расчеты. (Следите за моими рассуждениями, даже если вы панически боитесь математики. Если вы поработаете над примерами, вычисления и математические рассуждения покажутся вам довольно простыми. Не надо восклицать, взглянув на следующие несколько цифр: «Нет, ни в коем случае, я это просто пропущу». Важно уметь думать с числами и о числах.)
При первом броске может наступить лишь один из двух возможных исходов; орел (О) или решка (Р). Что произойдет, если монету бросят дважды? Существует четыре возможных исхода: орел оба раза (ОО), орел в первый раз и решка во второй раз (ОР), решка в первый раз и орел во второй раз (РО) и решка оба раза (РР). Поскольку существует четыре возможных исхода и лишь один способ выпадения двух орлов, то вероятность этого события равна 1/4 (опять-таки мы предполагаем, что монета – «честная», т. е. выпадение орла и решки равновероятно). Существует общее правило для вычисления вероятности совместного появления нескольких событий в любой ситуации – правило «и». Если вы хотите найти вероятность совместного появления первого и второго события (орел при первом и при втором броске), надо перемножить вероятности наступления этих событий по отдельности. Применяя правило «и», мы находим, что вероятность появления двух решек при двукратном броске монеты равна ? x ? = 1/4. Интуитивно кажется, что вероятность совместного появления двух событий должна быть меньше, чем вероятность каждого из них в отдельности; так оно и оказывается.
Простой способ расчета этой вероятности получается, если представить все возможные события с помощью древовидной диаграммы. Древовидные диаграммы использовались в главе 4, когда мы проверяли правильность утверждений типа «если… то…». В этой главе мы припишем ветвям дерева вероятностные значения, чтобы определить вероятности различных сочетаний исходов. В последующих главах я еще вернусь к древовидным диаграммам при рассмотрении способов нахождения творческих решений задач.
При первом броске монеты она упадет или орлом, или решкой вверх. Для «честной» монеты выпадения орла и решки имеют одинаковую вероятность, равную 0,5. Давайте изобразим это следующим образом:
Когда вы бросаете монету второй раз, то либо за первым орлом последуют второй орел или решка, либо за первой решкой последуют второй орел или решка. Вероятности выпадения орла и решки при втором броске по-прежнему равны 0,5. Исходы второго броска изображаются на диаграмме в виде дополнительных ветвей дерева.
Как видно из диаграммы, существует четыре возможных исхода. Вы можете пользоваться этим деревом для нахождения вероятностей других событий. Чему равна вероятность получения одной решки при двух бросках монеты? Поскольку существует два способа, которыми можно получить одну решку (ОР или РО), ответ равен 2/4 или ?. Если вы хотите найти вероятность двух или более различных исходов, сложите вероятности всех исходов. Это называется правилом «или». По-другому эту задачу можно сформулировать так: «Чему равна вероятность получить или сначала орла, а потом решку (1/4), или сначала решку, а потом орла (1/4)?» Правильная процедура нахождения ответа состоит в том, чтобы сложить эти значения, в результате чего получается ?. Интуитивно кажется, что вероятность появления одного из нескольких событий должна быть больше, чем вероятность появления каждого из них; так оно и оказывается.
Правилами «и» и «или» можно пользоваться только тогда, когда интересующие нас события независимы. Два события независимы, если появление одного из них не влияет на появление второго. В рассматриваемом примере результат первого броска монеты никак не влияет на результат второго броска. Кроме того, для применения правила «или» необходимо, чтобы события были несовместимыми, т. е. не могли происходить одновременно. В рассматриваемом примере исходы являются несовместимыми, поскольку мы не можем получить и орла, и решку при одном броске.
Представление событий в виде древовидных диаграмм полезно во многих ситуациях. Давайте расширим наш пример. Предположим, что мужчина в полосатом костюме с длинными, подкрученными вверх усами и бегающими маленькими глазками останавливает вас на улице и предлагает сыграть на деньги, бросая монету. Он все время ставит на орла. При первом броске монета падает орлом вверх. При втором броске происходит то же самое. При третьем броске опять выпадает орел. Когда вы начнете подозревать, что у него «нечестная» монета? У большинства людей сомнения возникают при третьей или четвертой попытке. Вычислите вероятность выпадения одних орлов при трех и четырех бросках «честной» монеты (вероятность выпадения орла равна 0,5).
Для расчета вероятности выпадения трех орлов в трех попытках вам надо нарисовать дерево с тремя рядами «узлов», причем из каждого узла исходят две «ветви».
В этом примере нас интересует вероятность выпадения трех орлов подряд при условии, что монета «честная». Посмотрите на столбец, озаглавленный «исход», и найдите исход ООО. Поскольку это единственный исход с тремя орлами, перемножьте вероятности вдоль ветви 000 (обведенной на диаграмме) и вы получите 0,5 х 0,5 х 0,5 = 0,125. Вероятность 0,125 означает, что если монета «честная», то в среднем она будет падать орлом вверх три раза подряд в 12,5% случаев. Поскольку эта вероятность невелика, то при выпадении трех орлов подряд большинство людей начинает подозревать, что монета «с секретом».
Для расчета вероятности выпадения четырех орлов в четырех попытках добавьте к дереву дополнительные ветви.
Вероятность выпадения четырех орлов равна 0,5 х 0,5 х 0,5 х 0,5 = 0,0625, или 6,25%. Как вы уже знаете, математически она равна 0,54; т. е. умножить число само на себя четыре раза – это то же самое, что возвести его в четвертую степень. Если вы будете считать на калькуляторе, где есть операция возведения в степень, то вы получите тот же самый ответ – 0,0625. Хотя такой исход возможен и когда-нибудь произойдет, он маловероятен. На самом деле он настолько неправдоподобен и необычен, что многие сказали бы, что человек с бегающими глазками, наверное, жульничает. Несомненно, что при выпадении пятого орла подряд разумно будет заключить, что вы имеете дело с мошенником. Для большинства научных целей событие считается «необычным», если его появление ожидается с вероятностью менее 5%. (На языке теории вероятностей это записывается так: р ‹ 0,05.)
Давайте оставим искусственный пример с монетой и применим ту же логику в более полезном контексте. Я уверена, что любой студент когда-либо сталкивался с тестами с выбором вариантов, в которых нужно выбирать из предложенных вариантов правильные ответы. В большинстве таких тестов на каждый вопрос предлагается пять вариантов ответов, из которых правилен только один. Предположим, что вопросы настолько трудны, что вы можете только случайно угадать правильный ответ. Какова вероятность правильного угадывания при ответе на первый вопрос? Если вы понятия не имеете, какой из вариантов является правильным ответом, то вы с одинаковой вероятностью можете выбрать любой из пяти вариантов, предполагая, что любой из них может оказаться правильным. Поскольку сумма вероятностей выбора всех вариантов должна быть равна единице, то вероятность выбора каждого из вариантов при равновероятности всех вариантов равна 0,20. Один из вариантов правильный, а остальные – неправильные, поэтому вероятность выбора правильного варианта равна 0,20. Древовидная диаграмма этой ситуации изображена ниже.