Искатели необычайных автографов - Владимир Артурович Левшин
Шрифт:
Интервал:
Закладка:
— Благодарю вас, мсье! Поверьте, мне было чрезвычайно интересно! — рассыпается бес, но неожиданно зевает и страшно смущается. — Пардон, мсье! Не подумайте, что это от вашей теоремы. Всему виной чай. Он всегда действует на меня как снотворное. С вашего разрешения я вздремну…
Он взлетает на верхнюю полку и скрывается в книге Лесажа, с силой захлопнув за собой картонную обложку. В ту же минуту оттуда начинает исходить легкое блаженное похрапывание: «Хрр-фью… хрр-фью…»
Филоматики растроганно переглядываются.
— Перерыв?
— Перерыв!
Вечер чайного дня
— Открываем наше вечернее заседание, — объявляет Фило, когда все они снова сидят за столом и Асмодей кулачком протирает заспанные глаза. — Что у нас на повестке… пардон, на чашке дня?
Бес молча указывает на рисунок, где три кавалера и одна дама играют в карты.
— Эпизод под названием «В великосветском салоне», — определяет Фило.
Все еще позевывая, Асмодей заглавие одобряет, добавив, однако, что к этому эпизоду примыкает еще один: «Встреча на улице Сен-Мишель», связанный с ним общей темой «Теория вероятностей». Кроме того, прежде чем перейти к обсуждению, не мешает установить дату…
Мате уверенно объявляет, что разговор за карточным столом мог быть только зимой 1654 года.
— Почем вы знаете? — любопытствует Фило.
— Да потому что речь шла о переезде Паскаля и герцога Роанне в Пор-Рояль. Отсюда следует, что интересующий нас эпизод происходил уже после обращения Паскаля, которое, как я выяснил, относится к 23 ноября 1654 года. И судя по тому, что маркиза об этом узнать не успела, разговор ее с де Мере отстоит не слишком далеко от указанной даты: он мог состояться в конце ноября или начале декабря.
— Мог-то мог, но вот состоялся ли? — вырывается у Фило.
— Пф! — Асмодей возмущенно фыркает и просыпается окончательно. — Не все ли равно! Важно другое: убедительно или неубедительно? Вероятно или невероятно?
— Вероятно, вероятно! — дружно успокаивают его филоматики.
— Вот и перейдем к задачам о вероятностях, изложенным шевалье де Мере, — ловко поворачивает разговор черт. — Задача первая: двое играют в кости, бросая по два кубика сразу. Один ставит на то, что хотя бы однажды выпадут две шестерки одновременно. Другой — на то, что две шестерки одновременно не выпадут ни разу. Спрашивается, сколько надо сделать бросков, чтобы шансы на выигрыш первого игрока превысили шансы второго.
— Ясно, что здесь возможны 36 комбинаций, — говорит Мате.
— Это почему же? — сейчас же придирается Фило.
— Потому, что каждая из шести граней первой кости варьируется с шестью гранями второй. Следовательно, число возможных вариантов есть 6×6, что всегда равно 36. И только один из этих 36 вариантов дает выигрыш первому игроку. Стало быть, вероятность выпадения двух шестерок очень мала: 1/36 ≈ 0,028. А вероятность невыпадения, наоборот, очень велика: 1 — 1/36 = 35/36 ≈ 0,972. При вторичном броске вероятность невыпадения сохраняется (35/36), так как она не зависит от результата первого броска. Значит, согласно теореме умножения, вероятность невыпадения с учетом обоих бросков будет уже равна произведению вероятностей каждого броска в отдельности, то есть (35/36)2. Тогда вероятность выпадения при двух бросках равна: 1 — (35/36)2, что больше вероятности выпадения при одном броске почти вдвое: 1 — (35/36)2 ≈ 1—0,95 = 0,05. Остается выяснить, каково должно быть минимальное число бросков, чтобы вероятность выпадения превысила вероятность невыпадения, то есть стала бы больше половины. Обозначим неизвестное нам число бросков через х. Тогда вероятность невыпадения (35/36)x, вероятность выпадения р = 1 — (35/36)x. Вот и все.
— Позвольте! — шебаршится Фило. — Как же всё, если икс так и остался ненайденным? И каким способом вы думаете его найти?
— Либо с помощью логарифмов, либо подбирая вместо икса числа, при которых вероятность выигрыша станет больше половины.
— Значит, именно так решали эту задачу в семнадцатом веке?
— Вот этого не скажу. К сожалению, лично мне способы Паскаля, Ферма и де Мере не известны.
— Зато известны результаты их решений, мсье. У Паскаля и Ферма х = 25. А шевалье де Мере получил два ответа: 24 и 25. И теперь у нас есть возможность выяснить, какой из них верен.
— Вот именно, — кивает Мате. — При х = 24:
р = 1 — (35/36)24 ≈ 1 — 0,5094 = 0,4906.
При х = 25:
р = 1 — (35/36)25 ≈ 1 — 0,4955 = 0,5045.
Так что правы все-таки Паскаль и Ферма: вероятность, превышающая половину — 0,5045, получается именно при х = 25.
— Слава тебе господи! — ублаготворенно вздыхает Фило. — Одна задача с плеч долой. Можно переходить к следующей…
Но в это время из знакомой нам книги Лесажа, где на обложке Хромой бес возносит в ночное небо сеньора в испанском плаще и широкополой шляпе, вырывается чей-то отчаянный баритон в сопровождении дикого кошачьего хора.
— Асмодей, Асмодей! Куда вы запропастились? Я жду вас целую вечность!
— Дон Клеофас Леандро-Перес Самбульо, — смешливым шепотом поясняет черт. — Всегда этот студент влипает в какие-то истории.
Услыхав голоса сородичей, Пенелопа и Клеопатра приходят в страшное волнение и начинают носиться по квартире как угорелые. Буль, которому передается их беспокойство, рычит, задрав голову к потолку. Но виновник переполоха и ухом не ведет.
— Асмодей! — взывает Самбульо. — Есть у вас совесть? Бросили меня на крыше, а тут какой-то кошачий симпозиум.
«Мя-а-а-у! Мя-а-а-у!» — завывают коты на крыше.
«Мяу! Мяу!» — вторят кошки в комнате.
И тут Асмодей не выдерживает (он бес не БЕСсердечный).
— Лечу, дорогой дон Леандро-Перес! — восклицает он, торопливо доедая пирог. — Продержитесь еще немного.
Он вихрем взвивается к потолку и снова исчезает за картонной обложкой, откуда сразу же доносится жалобный визг разгоняемых симпозиатов вперемешку с чертыханием Самбульо. Потом все стихает, и Асмодей с расцарапанным носом, но зато в прекрасном настроении вновь занимает место у стола.
— Ну и переделка, мсье! По-моему, там собрались все коты Мадрида. Только не пришлось им закончить свою КОТОвасию. Ко-ко-ко…
— Сходное положение. Совсем как во второй задаче де Мере, — острит Мате. — Игроки вносят деньги, но не успевают закончить игру. После чего им приходится