Категории
Самые читаемые
Лучшие книги » Домоводство, Дом и семья » Развлечения » Математические головоломки и развлечения - Мартин Гарднер

Математические головоломки и развлечения - Мартин Гарднер

Читать онлайн Математические головоломки и развлечения - Мартин Гарднер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 76 77 78 79 80 81 82 83 84 ... 97
Перейти на страницу:

Одну из главных причин всех затруднений Гоббса понять нетрудно. Он никак не мог привыкнуть к мысли о том, что точки, линии и поверхности можно рассматривать абстрактно как геометрические объекты, размерность которых меньше трех. «По-видимому, он так и ушел в могилу, — пишет в книге «Ссоры авторов» Исаак Дизраэли, — с твердым убеждением, что поверхности обладают и глубиной и толщиной, несмотря на все возражения геометров, выслушанные им при жизни». Гоббс являет собой классический пример человека выдающихся способностей, вступившего в область науки, для которой он плохо подготовлен, и растратившего всю энергию на решение пустых псевдонаучных вопросов.

Хотя невозможность решения задачи о квадратуре круга строго доказана, задача о квадратуре фигур, ограниченных дугами окружности, часто бывает вполне разрешимой. Именно это обстоятельство все еще пробуждает ложные надежды у «квадратурщиков».

Рис. 212 Титульный лист одной из книг Гоббса, содержащей «решение» задачи о квадратуре круга.

Интересный пример такой квадрируемой фигуры показан на рис. 213.

Рис. 213 Скольким квадратным единицам равна площадь этой фигуры?

Контур нижней части этой вазы образован дугой в 3/4 окружности радиусом 10 см. Верхняя половина ограничена тремя четвертушками той же окружности. Как быстро сможет читатель назвать с точностью до последнего десятичного знака длину стороны квадрата, имеющего площадь, равную площади этой фигуры?

Близкими родственниками «квадратурщиков» были вычислители π — те, кто порой затрачивал целые годы для того, чтобы вручную найти новые знаки в десятичном разложении π, оставив позади все ранее проведенные вычисления. Для этого использовали бесконечные ряды или произведения, сходящиеся к π. Одно из простейших выражений для π открыл Валлис:

В числителях дробей по два раза повторяются последовательные четные числа. (Отметим случайное сходство между первыми пятью знаменателями и цифрами в рациональном приближении числа π, открытом китайским астрономом!) Несколько десятилетий спустя великий Лейбниц открыл другую изящную формулу:

Самым неутомимым вычислителем π был английский математик Уильям Шенкс. Более 20 лет жизни он посвятил вычислению 707 знаков числа π. К сожалению, несчастный Шенкс ошибся в пятьсот двадцатом знаке, и все последующие цифры в полученном им выражении неверны. (Ошибку обнаружили лишь в 1945 году, поэтому семисотсемизначное разложение Шенкса и поныне еще можно встретить во многих книгах.) В 1949 году электронно-вычислительная машина «ЭНИАК», проработав в течение 70 часов, вычислила более 2000 знаков числа π. Позднее с помощью компьютера, проработавшего всего лишь 13 минут, были вычислены 3000 знаков π. В 1959 году один компьютер в Англии и другой во Франции вычислили 10000 десятичных знаков π.

Самое странное в найденных Шенксом 707 знаках π состоит в том, что эти знаки «свысока» смотрят на цифру 7: если каждая из остальных цифр, как и должно быть, встречается среди первых 700 знаков около 70 раз, то семерка появляется лишь 51 раз. «Если бы все циклометристы и апокалипсисты объединили свой разум, — писал де Морган, — и до тех пор, пока они не придут к единому мнению относительно причин этого явления, не печатали бы ни единой строки, то они заслужили бы признательность всего человечества». Спешу добавить, что после того, как все 707 первых знаков π были вычислены верно, недостающие семерки заняли подобающее им место и справедливость была восстановлена. Математики-интуиционисты придерживаются того мнения, что утверждение об «истинности или ложности» любого высказывания лишено смысла, если вы не можете подтвердить или опровергнуть это высказывание, и всегда приводят пример такого высказывания: «В десятичном разложении числа π встречаются три семерки подряд». Ныне мы с полной уверенностью можем утверждать, что высказывание «В десятичном разложении числа 7Г встречаются подряд пять семерок» истинно. Среди недавно полученных десятичных знаков для π были обнаружены не только однократно повторяющиеся тройки всех цифр от 0 до 9, но и несколько групп из 4-х семерок (и совершенно неожиданная очередь из 6-ти девяток).

До сих пор π благополучно выдерживало все статистические испытания на случайность. Это кажется непонятным тем, кто полагает, что у столь простой и изящной кривой, как окружность, должно бы быть менее дикое отношение между «обхватом» и поперечником, но большинство математиков твердо уверены в том, что среди цифр десятичного разложения π никогда не будет обнаружено никакого порядка. Разумеется, эти числа не случайны в том смысле, что они определяют число π, но в этом же смысле не случаен и миллион «случайных» цифр в таблицах так называемых «случайных чисел». Они также представляют некоторое число, к тому же целое.

Если верно, что цифры в десятичном разложении π случайны, то мы, по-видимому, с полным основанием можем сформулировать парадокс, в какой-то мере аналогичный парадоксу со стадом обезьян, которые, просидев достаточно долго за пишущими машинками, смогут напечатать все пьесы Шекспира. Стифен Барр заметил, что если не ставить пределом точности измерения длины стержней, то с помощью двух стержней, не делая на них никаких зарубок или меток, можно в принципе передать содержание всей «Британской энциклопедии». В самом деле, длина одного стержня принимается за единицу (эталон) длины. Длина другого выбирается так, чтобы она отличалась от единичной на величину, выражающуюся очень длинной десятичной дробью. Цифрами десятичной дроби закодирован текст «Британской энциклопедии»: различным числам (в десятичной записи которых нет нуля) сопоставлены слова и знаки пунктуации, встречающиеся во всех томах энциклопедии от «А» до «Z»; нуль использован для разделения кодовых чисел. Ясно, что таким образом всю «Британскую энциклопедию» можно закодировать одним, хотя и невероятно длинным числом. Поставив перед этим числом запятую и приписав слева единицу, мы получим длину второго стержня Барра.

При чем же здесь π? А вот при чем: если цифры в десятичном разложении π действительно распределены случайно, то где-то в их бесконечной последовательности должен встретиться отрезок, содержащий в закодированном виде всю «Британскую энциклопедию», а также любую книгу, которая была, будет или могла быть написана.

* * *

В 1961 году компьютер ИБМ-7090 вычислила π с точностью до 100625 знаков. Программа была составлена Дэниэлом Шенксом (не имеющим никакого отношения к Уильяму Шенксу; это лишь одно из тех странных совпадений, которыми изобилует история числа π) и Джоном У. Ренчем-младшим. Машинное время составило 8 ч 1 мин; еще 42 мин потребовалось для того, чтобы перевести результат из двоичной в десятичную форму. Вычисление нескольких тысяч знаков π в настоящее время стало популярным средством проверки новых компьютеров и обучения молодых программистов.

«Загадочное и чудесное π,— пишет в своей книге «Что мы знаем о больших числах» Филипп Дж. Дэвис, — стало чем-то вроде покашливания, которым компьютеры прочищают горло».

Ответ

Читателю предлагалось найти сторону квадрата, равновеликого (по площади) фигуре, похожей на вазу (рис. 214) и ограниченной дугами окружности диаметром 10 см.

Рис. 214 Как «квадрировать» вазу.

Ответ: сторона квадрата также равна 10 см. Если пунктирные линии провести так, как показано на рисунке, то станет видно, что сегментами А, В и С можно заполнить «лунки» А', В' и С', при этом образуются два квадрата общей площадью 100 см2. На рис. 215 показано, как разрезать вазу всего лишь на три части так, чтобы из них можно было сложить квадрат 10 х 10 см.

Рис. 215 Квадрирование вазы разрезанием ее на три части.

Глава 42. ВИКТОР АЙГЕН, МАТЕМАГ И ВОЛШЕБНИК

В последнее время все больше фокусников-любителей стало обращать внимание на «матемагию» — фокусы, основанные не на ловкости рук, а на том или ином математическом принципе. Профессионалы не любят таких фокусников и стараются их избегать, потому что для обычной аудитории они слишком трудны и непонятны («ученая материя»!), но в небольшой компании, если их показывать не как чудеса, а просто как головоломки, такие фокусы могут быть интересными и занимательными. Мой друг Виктор Айген, инженер по электронному оборудованию и экс-президент «Братства американских повелителей волшебной палочки», всегда находится в курсе последних достижений матемагии. В надежде почерпнуть у него что-нибудь интересное для странички «Математических развлечений», регулярно публикуемой в журнале Scientific American, я нанес ему очередной визит.

1 ... 76 77 78 79 80 81 82 83 84 ... 97
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математические головоломки и развлечения - Мартин Гарднер торрент бесплатно.
Комментарии