Популярно о конечной математике и ее интересных применениях в квантовой теории - Феликс Лев
Шрифт:
Интервал:
Закладка:
Конечная математика начинается не с натурального ряда, а с набора чисел Rp=(0,1,2,…p-1) который в литературе называется кольцом вычетов по модулю p, и это отмечено в статье на стр. 8. В этом наборе сложение, вычитание и умножение определяются как обычно, но по модулю p. В теории чисел фраза что что-то берется по модулю p означает, что берется только остаток от деления этого числа на p. Например, возьмем набор чисел (0,1,2,3,4), т. е., p=5. Тогда 3+1=4 как обычно, но 3+2=0 и 3+3=1. Этот набор замкнут относительно этих трех операций т. к. мы всегда получим число из этого набора. А если p простое, то этот набор становится не только кольцом, но и полем т. к. можно ввести деление. Например, 1/2=3, 1/4=4 и т. д. Можно сказать, что все это – экзотика и (или) патология, которая не имеет отношения к жизни, т. к. 3+2 всегда 5, а не ноль.
Ответ на это возражение такой. Допустим, для простоты, что p нечетное. Т. к. операции в нашем наборе определяются по модулю p, то Rp можно представить и как Rp=(-(p-1)/2,-(p-3)/2 … – 1,0,1,… (p-3)/2,(p-1)/2). Тогда, если p очень большое, то для чисел, которые по абсолютной величине <=p, сложение, вычитание и умножение будут такими же как обычно, т. е., в этом случае мы не замечаем p. Отличие от обычного случая будет только для чисел, у которых абсолютная величина сравнима с p. Можно выдвинуть возражение, что все равно все это нефизично т. к. 1/2 равно большому числу (p+1)/2. Но т.к. состояния в квантовой теории проективные, то это возражение ничего не опровергает (как подробно обсуждается в моих работах). Более того, возникает вопрос (см. новый вариант статьи) является ли обычное деление фундаментальной операцией.
Как отмечено в моих работах (например, в [15], которую рецензент читал), указанный набор наглядно можно представить в виде точек на окружности. Это следует из того, что если возьмем любой элемент aϵRp и будем все время прибавлять 1, то за p шагов исчерпаем всё Rp по аналогии с тем, что, когда движемся по окружности в одном направлении, то когда-то вернемся в исходную точку. В то же время, кольцо целых чисел Z можно изобразить целыми точками на бесконечной прямой. Когда p увеличивается, то для все большей части нашего набора сложение, вычитание и умножение становятся как в обычном случае. Это аналогично тому, что когда мы находимся на кривой поверхности, то кривизну не замечаем до тех пор пока расстояния радиуса кривизны. Формальный предел p→∞ наглядно означает, что из Rp мы делаем Z, т. е. как бы разрываем окружность и делаем из нее прямую.
Историческая аналогия здесь очевидна. В течении многих лет люди думали, что Земля плоская, а потом все же поняли, что она круглая. Пока мы имеем дело с расстояниями радиуса кривизны, то кривизну не замечаем. Аналогично, пока еще абсолютное большинство людей думают, что набор чисел – это прямая. Это происходит потому, что в настоящее время число p очень большое и, когда мы имеем дело с числами p, то «кривизну» не замечаем.
Когда мы разрываем окружность, то теряем симметрию т. к. окружность – более симметричная фигура чем бесконечная прямая. Это следует из того, что если возьмем aϵZ и будем все время прибавлять 1, то не исчерпаем всё Z. Для этого надо к a прибавлять +1 и -1, причем бесконечное число раз. И, когда мы разорвали окружность и получили набор целых чисел, то теперь с ними можем наводить большую науку, вводить, рациональные, действительные числа и т.д. Как я объясняю в своих работах (см. также новый вариант статьи), рациональные и действительные числа являются искусственными и для квантовой теории они не нужны. Никто не спорит, что техника стандартного анализа полезна во многих приложениях, но эта техника часто является хорошим приближением потому, что p очень большое. И раз стандартная математика часто хорошо описывает данные даже в квантовой теории, то это не значит, что всегда будет достаточно применять стандартную математику. Например, классическая механика описывает много данных с высокой точностью, но перестает работать когда v/c не мало.
Итак, стандартная математика может трактоваться как формальный предел конечной при p→∞. Конечная математика является более общей (или фундаментальной) т.к. она может воспроизвести все результаты стандартной математики, если взять p достаточно большим. И наоборот, в отличие от того, что пишет рецензент, когда мы уже перешли к пределу p→∞, то вернуться назад мы уже не можем. Стандартная математика не может воспроизвести все результаты конечной т. к. в стандартной математике уже нет операций по модулю p. Ситуация полностью аналогична той, которая описана выше для трех случаев: менее общая теория получается из более общей, когда некоторый параметр, который в более общей теории конечен, формально устремляется к нулю или бесконечности. Это я объясняю в своих работах, в том числе в [15], которую рецензент читал. Но т. к. это не убедило рецензента, то в новом варианте я это объясняю более подробно, тем более, что ЭЧАЯ является обзорным журналом.
Рецензент пишет, что в [15] p – это константа, такая что конечная математика имеет дело с конечным числом объектов p, а в настоящей работе"…p характеристика конечного поля или кольца. Какая именно характеристика автор не уточняет.". В учебниках по конечной математике число p называется характеристикой конечного поля или кольца, так что все операции производятся по модулю p. Это я писал в предыдущих работах. В настоящей работе смысл p объясняется и в конце раздела 2 говорится, что в теории чисел p – это стандартное обозначение для характеристики поля или кольца, так что тоже объясняется в каком смысле p характеристика. Но все же, в связи с замечанием рецензента, теперь и в новом варианте статьи, как только ввожу p, то сразу пишу, что оно называется характеристикой.
Итак, и в моих предыдущих работах и в данной работе p – это одна и та же