- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Программирование на языке Ruby - Хэл Фултон
Шрифт:
Интервал:
Закладка:
5.17. Поразрядные операции над числами
Иногда требуется работать с двоичным представлением объекта Fixnum. На прикладном уровне такая необходимость возникает нечасто, но все-таки возникает.
Ruby обладает всеми средствами для таких операций. Для удобства числовые константы можно записывать в двоичном, восьмеричном или шестнадцатеричном виде. Поразрядным операциям И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ и НЕ соответствуют операторы &, |, ^ и ~.
x = 0377 # Восьмеричное (десятичное 255)
y = 0b00100110 # Двоичное (десятичное 38)
z = 0xBEEF # Шестнадцатеричное (десятичное 48879)
а = x | z # 48895 (поразрядное ИЛИ)
b = x & z # 239 (поразрядное И)
с = x ^ z # 48656 (поразрядное ИСКЛЮЧАЮЩЕЕ ИЛИ)
d = ~ y # -39 (отрицание или дополнение до 1)
Метод экземпляра size позволяет узнать размер слова для той машины, на которой исполняется программа.
size # Для конкретной машины возвращает 4.
Имеются операторы сдвига влево и вправо (<< и >>соответственно). Это логические операторы сдвига, они не затрагивают знаковый бит (хотя оператор >> распространяет его).
x = 8
y = -8
а = x >> 2 # 2
b = y >> 2 # -2
с = x << 2 # 32
d = y << 2 # -32
Конечно, если сдвиг настолько велик, что дает нулевое значение, то знаковый бит теряется, поскольку -0 и 0 — одно и то же.
Квадратные скобки позволяют трактовать числа как битовые массивы. Бит с номером 0 всегда является младшим, вне зависимости от порядка битов в конкретной машинной архитектуре.
x = 5 # То же, что 0b0101
а = x[0] # 1
b = x[1] # 0
с = x[2] # 1
d = x[3] # 0
# И так далее # 0
Присваивать новые значения отдельным битам с помощью такой нотации невозможно (поскольку Fixnum хранится как непосредственное значение, а не как ссылка на объект). Но можно имитировать это действие путем сдвига 1 влево на нужное число позиций с последующим выполнением операции ИЛИ или И.
# Выполнить присваивание x[3] = 1 нельзя,
# но можно поступить так:
x |= (1<<3)
# Выполнить присваивание x[4] = 0 нельзя,
# но можно поступить так:
x &= ~(1<<4)
5.18. Преобразование системы счисления
Ясно, что любое целое число можно представить в любой системе счисления, поскольку хранятся эти числа в двоичном виде. Мы знаем, что Ruby умеет работать c целыми константами, записанными в любой из четырех наиболее популярных систем. Следовательно, разговор о преобразовании системы счисления может вестись только применительно к числам, записанным в виде строк.
Вопрос о преобразовании строки в целое рассмотрен в разделе 2.24. Для преобразования числа в строку проще всего воспользоваться методом to_s, которому можно еще передать основание системы счисления. По умолчанию оно равно 10, но в принципе может быть любым вплоть до 36 (когда задействованы все буквы латинского алфавита).
237.to_s(2) # "11101101"
237.to_s(5) # "1422"
237.to_s(8) # "355"
237.to_s # "237"
237.to_s(16) # "ed"
237.to_s(30) # "7r"
Другой способ — обратиться к методу % класса String:
hex = "%x" % 1234 # "4d2"
oct = "%о" % 1234 # "2322"
bin = "%b" % 1234 # "10011010010"
Метод sprintf тоже годится:
str = sprintf(str,"Nietzsche is %xn",57005)
# str теперь равно: "Nietzsche is deadn"
Если нужно сразу же вывести преобразованное в строку значение, то подойдет и метод printf.
5.19. Извлечение кубических корней, корней четвертой степени и т.д.
В Ruby встроена функция извлечения квадратного корня (Math.sqrt), поскольку именно она применяется чаще всего. А если надо извлечь корень более высокой степени? Если вы еще не забыли математику, то эта задача не вызовет затруднений.
Можно, например, воспользоваться логарифмами. Напомним, что е в степени x — обратная функция к натуральному логарифму x и что умножение чисел эквивалентно сложению их логарифмов.
x = 531441
cuberoot = Math.exp(Math.log(x)/3.0) # 81.0
fourthroot = Math.exp(Math.log(x)/4.0) # 27.0
Но можно просто использовать дробные показатели степени (оператор возведения в степень принимает в качестве аргумента произвольное целое число или число с плавающей точкой).
include Math
y = 4096
cuberoot = y**(1.0/3.0) # 16.0
fourthroot = y**(1.0/4.0) # 8.0
fourthroot = sqrt(sqrt(y)) # 8.0 (то же самое)
twelfthroot = y**(1.0/12.0) # 2.0
Отметим, что во всех примерах мы пользовались при делении числами с плавающей точкой (чтобы избежать отбрасывания дробной части).
5.20. Определение порядка байтов
Интересно, что производители компьютеров никак не могут договориться, в каком порядке лучше хранить двоичные байты. Следует ли размещать старший бит по большему или по меньшему адресу? При передаче сообщения по проводам нужно сначала посылать старший или младший бит?
Хотите верьте, хотите нет, но решение не произвольно. Существуют убедительные аргументы в пользу обеих точек зрения (обсуждать их здесь мы не будем).
Вот уже больше двадцати лет, как для описания противоположных позиций применяются термины «остроконечный» (little-endian) и «тупоконечный» (big-endian). Кажется, впервые их употребил Дэнни Коэн (Danny Cohen); см. его классическую статью "On Holy Wars and a Plea for Peace" (IEEE Computer, October 1981). Взяты они из романа Джонатана Свифта «Путешествия Гулливера».
Обычно нам безразличен порядок байтов в конкретной машинной архитектуре. Но как быть, если все-таки его нужно знать?
Можно воспользоваться показанным ниже методом. Он возвращает одну из строк LITTLE, BIG или OTHER. Решение основано на том факте, что директива l выполняет упаковку в машинном формате, а директива N распаковывает в сетевом порядке байтов (по определению тупоконечном).
def endianness
num = 0x12345678
little = "78563412"
big = "12345678"
native = [num].pack('1')
netunpack = native.unpack('N')[0]
str = "%8x" % netunpack
case str
when little
"LITTLE"
when big
"BIG"
else
"OTHER"
end
end
puts endianness # В данном случае печатается "LITTLE"
Этот прием может оказаться удобным, если, например, вы работаете с двоичными данными (скажем, отсканированным изображением), импортированными из другой системы.
5.21. Численное вычисление определенного интеграла
Я очень хорошо владею дифференциальным и интегральным исчислением…
У.С.Джильберт, «Пираты Пензанса», акт 1Для приближенного вычисления определенного интеграла имеется проверенная временем техника. Любой студент, изучавший математический анализ, вспомнит, что она называется суммой Римана.
Приведенный ниже метод integrate принимает начальное и конечное значения зависимой переменной, а также приращение. Четвертый параметр (который на самом деле параметром не является) — это блок. В блоке должно вычисляться значение функции от переданной в него зависимой переменной (здесь слово «переменная» употребляется в математическом, а не программистском смысле). Необязательно отдельно определять функцию, которая вызывается в блоке, но для ясности мы это сделаем.
def integrate(x0, x1, dx=(x1-x0)/1000.0)
x = x0
sum = 0
loop do
y = yield(x)
sum += dx * y
x += dx
break if x > x1
end
sum
end
def f(x)
x**2
end
z = integrate(0.0,5.0) {|x| f(x) }
puts z, "n" # 41.7291875
Здесь мы опираемся на тот факт, что блок возвращает значение, которое может быть получено с помощью yield. Кроме того, сделаны некоторые допущения. Во-первых, мы предполагаем, что x0 меньше x1 (в противном случае получится бесконечный цикл). Читатель сам легко устранит подобные огрехи. Во-вторых, мы считаем, что функцию можно вычислить в любой точке заданной области. Если это не так, мы получим хаотическое поведение. (Впрочем, подобные функции все равно, как правило, не интегрируемы — по крайней мере, на указанном интервале. В качестве примера возьмите функцию f(x)=x/(x-3) в точке x=3.)
Призвав на помощь полузабытые знания об интегральном исчислении, мы могли бы вычислить, что в данном случае результат равен примерно 41.666 (5 в кубе, поделенное на 3). Почему же ответ не так точен, как хотелось бы? Из-за выбранного размера приращения; чем меньше величина dx, тем точнее результат (ценой увеличения времени вычисления).

