Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Химия » Общая химия - Николай Глинка

Общая химия - Николай Глинка

Читать онлайн Общая химия - Николай Глинка

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 102 103 104 105 106 107 108 109 110 ... 180
Перейти на страницу:

Концентрированная HNO3 пассивирует некоторые металлы. Еще Ломоносов открыл, что железо, легко растворяющееся в разбавленной азотной кислоте, не растворяется в холодной концентрированной HNO3. Позже было установлено, что аналогичное действие азотная кислота оказывает на хром и алюминий. Эти металлы переходят под действием концентрированной азотной кислоты в пассивное состояние (см. § 100).

Степень окисленности азота в азотной кислоте равна +5. Выступая в качестве окислителя, HNO3 может восстанавливаться до различных продуктов:

Какое из этих веществ образуется, т. е. насколько глубоко восстанавливается азотная кислота в том или ином случае, зависит от природы восстановителя и от условий реакции, прежде всего от концентрации кислоты. Чем выше концентрация HNO3, тем менее глубоко она восстанавливается. При реакциях с концентрированной кислотой чаще всего выделяется NO2. При взаимодействии разбавленной азотной кислоты с малоактивными металлами, например, с медью, выделяется NO. В случае более активных металлов — железа, цинка — образуется N3O.

Сильно разбавленная азотная кислота взаимодействует с активными металлами — цинком, магнием, алюминием — с образованием иона аммония, дающего с кислотой нитрат аммония. Обычно одновременно образуются несколько продуктов.

Для иллюстрации приведем схемы реакций окисления некоторых металлов азотной кислотой:

При действии азотной кислоты на металлы водород, как правило, не выделяется.

При окислении неметаллов концентрированная азотная кислота, как и в случае металлов, восстанавливается до NO2, например

Более разбавленная кислота обычно восстанавливается до NO, например:

Приведенные схемы иллюстрируют наиболее типичные случаи взаимодействия азотной кислоты с металлами и неметаллами. Вообще же, окислительно-восстановительные реакции, идущие с участием HNO3, протекают сложно.

Смесь, состоящая из 1 объема азотной и 3—4 объемов концентрированной соляной кислоты, называется царской водкой. Царская водка растворяет некоторые металлы, не взаимодействующие с азотной кислотой, в том числе и «царя металлов» — золото. Действие ее объясняется тем, что азотная кислота окисляет соляную с выделением свободного хлора и образованием хлороксида азога (III), или хлорида нитрозила, NOCl:

Хлорид нитрозила является промежуточным продуктом реакции и разлагается:

Хлор в момент выделения состоит из атомов, что и обусловливает высокую окислительную способность царской водки. Реакции окисления золота и платины протекают в основном согласно следующим уравнениям:

- 401 -

С избытком соляной кислоты хлорид золота (III) и хлорид платины (IV) образуют комплексные соединения H[AuCl4] и H2[PtCl6] .

На многие органические вещества азотная кислота действует так, что один или несколько атомов водорода в молекуле органического соединения замещаются нитрогруппами — NO2. Этот процесс называется нитрованием и имеет большое значение в органической химии.

Электронная структура молекулы HNO3 рассмотрена в § 44.

Азотная кислота — одно из важнейших соединений азота: в больших количествах она расходуется в производстве азотных удобрений, взрывчатых веществ и органических красителей, служит окислителем во многих химических процессах, используется в производстве серной кислоты по нитрозному способу, применяется для изготовления целлюлозных лаков, кинопленки.

Соли азотной кислоты называются нитратами. Все они хорошо растворяются в воде, а при нагревании разлагаются с выделением кислорода. При этом нитраты наиболее активных металлов переходят в нитриты:

Нитраты большинства остальных металлов при нагревании распадаются на оксид металла, кислород и диоксид азота. Например:

Наконец, нитраты наименее активных металлов (например, серебра, золота) разлагаются при нагревании до свободного металла:

Легко отщепляя кислород, нитраты при высокой температуре являются энергичными окислителями. Их водные растворы, напротив, почти не проявляют окислительных свойств.

Наиболее важное значение имеют нитраты натрия, калия, аммония и кальция, которые на практике называются селитрами.

Нитрат натрия NaNO3, или натриевая селитра, иногда называемая также чилийской селитрой, встречается в большом количестве в природе только в Чили.

Нитрат калия KNO3, или калийная селитра, в небольших количествах также встречается в природе, но главным образом получается искусственно при взаимодействии нитрата натрия с хлоридом калия.

Обе эти соли используются в качестве удобрений, причем нитрат калия содержит два необходимых растениям элемента: азот и калий. Нитраты натрия и калия применяются также при стекловарении и в пищевой промышленности для консервирования продуктов.

- 402 -

Нитрат кальция Ca(NO3)2, или кальциевая селитра, получается в больших количествах нейтрализацией азотной кислоты известью; применяется как удобрение.

Нитрат аммония NH4NO3 — см. стр. 390.

143. Промышленное получение азотной кислоты.

Современные промышленные способы получения азотной кислоты основаны на каталитическом окислении аммиака кислородом воздуха. При описании свойств аммиака (см. § 137) было указано, что он горит в кислороде, причем продуктами реакции являются вода и свободный азот. Но в присутствии катализаторов окисление аммиака кислородом может протекать иначе. Если пропускать смесь аммиака с воздухом над катализатором, то при 750°C и определенном составе смеси происходит почти полное превращение NH3 в NO:

Образовавшийся NO легко переходит в NO2 , который с водой в присутствии кислорода воздуха дает азотную кислоту (см. § 140).

В качестве катализаторов при окислении аммиака используют сплавы на основе платины.

Получаемая окислением аммиака азотная кислота имеет концентрацию, не превышающую 60%. При необходимости ее концентрируют.

Промышленностью выпускается разбавленная азотная кислота концентрацией 55, 47 и 45%, а концентрированная — 98 и 97%. Концентрированную кислоту перевозят в алюминиевых цистернах, разбавленную — в цистернах из кислотоупорной стали.

144. Круговорот азота в природе.

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция CaCO3, образует нитраты;

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде.

Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий - "клубеньков", почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества.

Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений.

Изучение вопросов питания растений и повышения урожайности последних путем применения удобрений является предметом специальной отрасли химии, получившей название агрохимии. Большой вклад в развитие этой науки внесен французским ученым Ж. Б. Буссенго (1802—1887), немецким химиком Ю. Либихом (1803—1873) и русским ученым Д. Н. Пряшниковым.

1 ... 102 103 104 105 106 107 108 109 110 ... 180
Перейти на страницу:
На этой странице вы можете бесплатно скачать Общая химия - Николай Глинка торрент бесплатно.
Комментарии