- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Этот «цифровой» физический мир - Андрей Гришаев
Шрифт:
Интервал:
Закладка:
Согласно тому же принципу автономных превращений энергии, нельзя сообщить микрочастице кинетическую энергию, но можно превратить в её кинетическую энергию часть её собственной энергии. Таким образом, кинетическая и собственная энергии частицы образуют ещё одну сопряжённую пару энергий. И, по логике нашего подхода к понятию температуры, при увеличении средней кинетической энергии хаотического движения атомов, повышается температура системы из этих атомов. Но здесь, опять же, остаётся постоянной сумма кинетической и собственной энергий у каждого атома – при условии, что их энергии в других формах остаются прежними.
Так мы приходим к осознанию того, что при выравнивании температур у двух тел, находящихся в тепловом контакте, нескомпенсированная передача энергии от «горячего» тела к «холодному» не происходит. Каждое из этих тел остаётся при своей сумме энергий, а изменяются лишь соотношения в сопряжённых парах энергий, входящих в эти суммы. Не менее поразительный вывод следует применительно к термодинамически изолированной системе: такая система, без взаимодействия с окружающим миром, не может изменить свою суммарную энергию, но вполне может изменить свою температуру – если, в результате некоторых внутренних процессов, изменятся соотношения в сопряжённых парах энергий. Именно с такими процессами имеют дело термохимики, когда они определяют теплоты химических реакций калориметрическим методом – где измеряемой величиной является вовсе не энергия (не калории!), а приращение температуры.
Эта подмена понятий, которая совершается в термохимии, далеко не безобидна. Сущность того, что называется тепловыми эффектами химических реакций, остаётся загадкой, пока используются такие термины, как «выделение или поглощение тепла при химических реакциях». Эти термины вводят в заблуждение: можно подумать, что реакция, идущая «с поглощением тепла», заимствует это тепло из окружения. В действительности же, происходит всего лишь понижение температуры в зоне реакции. Последующий теплообмен с окружением совсем не обязателен – кстати, его и сводят на нет с помощью теплоизолирующих стенок калориметров.
Таким образом, мы приходим к важному выводу: так называемые тепловые эффекты химических реакций являются, в действительности, эффектами повышения или понижения температуры в зоне реакции. Эти повышения-понижения температуры требуют совсем иного объяснения, чем «выделения-поглощения тепла». Прежде чем дать это объяснение (5.11), рассмотрим вопрос об ионизации вещества движущейся заряженной частицей.
5.10. Как происходит ионизация вещества движущейся заряженной частицей.
Среднюю энергию, теряемую заряженной частицей на создание одной пары ионов, находят, деля полные потери энергии на число зарегистрированных ионов – например, по импульсу тока в ионизационной камере или пропорциональном счётчике.
В ранних моделях ионизационных потерь (см., например, [Э1]), рассматривался лишь ударный механизм ионизации. В нерелятивистской области энергий, наиболее вероятными считались столкновения, при которых ионизирующая частица выбивала из атома электрон с малой кинетической энергией, недостаточной для ионизации другого атома – и, лишь в небольшом проценте случаев, электроны, выбитые при первичной ионизации, имели энергию, достаточную для вторичной ионизации. Из этой модели механического выбивания электронов с очевидностью следовали выводы о зависимости средней энергии, теряемой на образование одной пары ионов (или иона плюс электрона), во-первых, от типа ионизирующей частицы – электрона, протона, α-частицы – и, во-вторых, от энергии ионизирующей частицы, поскольку чем больше эта энергия, тем большую кинетическую энергию может иметь выбитый электрон. На практике же всё оказалось иначе. «Наиболее важным экспериментальным фактом… является почти полная независимость энергии, расходуемой на образование пары ионов , от энергии первичного излучения», причём «для α-частиц, протонов, электронов и т.п. она почти одинакова» [Э1] – для различных газов она составляет 2-3 десятка эВ.
Считается, что качественное объяснение независимости от энергии ионизирующей частицы дал Фано [Д1,М2]. Упрощённо говоря, если ионизирующая частица выбивает электрон, способный произвести одну вторичную ионизацию, то потеря энергии частицей составляет примерно 2, но и ионизаций происходит две – так что, в среднем, потеря на одну ионизацию остаётся примерно постоянной. Эта бесхитростная арифметика не объясняет, однако, независимость от типа ионизирующей частицы. Между тем, хорошо известно, что, по сравнению с протоном, электрон способен передать выбиваемому электрону гораздо большую часть своей энергии – до половины её. При начальной энергии ионизирующего электрона в 10 кэВ, первый выбитый электрон мог бы иметь энергию почти в 5 кэВ, второй – почти в 2.5 кэВ, и т.д. Тогда ионизирующие электроны должны были бы тормозиться в газах на порядки эффективнее, чем протоны. Однако, известно, что «при малых скоростях потери энергии на единицу пути протона и электрона с одинаковыми скоростями не сильно отличаются друг от друга» [Э1]. А вот конкретные цифры: «в случае ионизации воздуха ударом электрона, протона и α-частицы…[энергии, соответствующие максимуму ионизации,] составляют 110 эВ (e), 1.3·105 эВ (p) и 1.8·106 эВ (α), т.е. различаются соответственно на три и четыре порядка, значения же скорости равны 7.5·108 см/сек (e), 5.0·108 см/сек (p) и 8.0·108 см/сек (α), т.е. имеют одинаковый порядок величины… можно заключить, что положение максимума вероятности ионизации ударом быстрой частицы определяется скорее не величиной её энергии, а её скоростью» [К2].
Это поразительное явление не объяснила и модель пролётной кулоновской передачи импульса выбиваемому электрону: соответствующая формула Бёте [Э1,Д1,М2] сконструирована лишь для случаев ионизирующих частиц с массой, много большей массы электрона. А ведь ионизирующие частицы различаются ещё и по заряду. В формулу Бёте входит квадрат числа элементарных зарядов, которое несёт ионизирующая частица – и α-частица, несущая два элементарных заряда, должна была бы иметь в четыре раза большие ионизационные потери, чем протон. Как уже цитировалось выше, ничего подобного на опыте не наблюдается. Кроме того, до сих пор не объяснён следующий феномен: по мере торможения ионизирующей частицы в веществе, её ионизирующая способность возрастает [Э1,М2]: создаётся всё больше ионов на единицу длины пути – вплоть до достижения максимума, после чего ионизирующая способность частицы быстро сходит на нет. Наконец, загадочным остаётся тот факт, что средние потери на ионизацию, «вопреки наивным ожиданиям, меньше всего для инертных газов, которые имеют наибольшие энергии ионизации» [Э1]. Таким образом, традиционный подход не приводит нас даже к элементарному пониманию механизмов ионизации вещества движущимися заряженными частицами.
На наш взгляд, нерелятивистская заряженная частица ионизирует вещество двумя главными способами. Первый из них – это, как и считали ранние исследователи, ударная ионизация. Однако, ударной ионизацией не объяснить, для подавляющего большинства случаев, картину распределения образующихся ионов вдоль траектории частицы. Речь идёт о случаях, когда ионы оказываются распределены по створу, характерный поперечный размер которого несопоставимо больше центральной «жилки» с поперечником, соответствующим сечению ударной ионизации – причём такая картина получается не только в газах, но и в конденсированных средах, например, в фотоэмульсиях. Эту картину не может дать вторичная ионизация. Действительно, пусть максимальная энергия, которую способна передать электрону налетающая тяжёлая частица, есть 2meV [М2], где me – масса электрона, V – скорость налетающей частицы. Тогда протон с энергией 500 кэВ передавал бы электрону не более 270 эВ. Этого хватило бы, в лучшем случае, на десяток вторичных ионизаций – причём, по мере торможения протона, эта цифра уменьшалась бы. В действительности же, в треках низкоэнергичных протонов (не говоря уже о треках мезонов) ионов на 1-2 порядка больше за пределами центральной «жилки», чем в ней самой – и, по мере торможения протона, число этих «запредельных» ионов на единицу длины увеличивается. Таким образом, нам придётся допустить, что работает какой-то механизм бесстолкновительной ионизации – причём он не основан на кулоновском взаимодействии, поскольку средние потери на ионизацию не зависят от числа элементарных зарядов у ионизирующей частицы (см. выше).

