- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Этот «цифровой» физический мир - Андрей Гришаев
Шрифт:
Интервал:
Закладка:
Рис.5.8
Действительно, если атом А приобретает энергию возбуждения Е*, которая несколько больше энергии уровня А1, то атом А оказывается в стационарном возбуждённом состоянии А1, а от энергии возбуждения, как энергии переменного зарядового разбаланса, остаётся разность между энергией Е* и энергией уровня А1. Химическая связь может продолжать поддерживаться при циклическом обмене атомов этой остаточной энергией. По аналогии с вышеизложенным, для этой остаточной энергии также должны иметь место резонансные значения, соответствующие переходам между стационарными уровнями в атоме В. Таким образом, проясняется происхождение серий молекулярных линий поглощения, которые соответствуют таким большим исходным энергиям возбуждения, которые могут в разы превышать энергию ионизации атома В из его основного состояния.
Заметим, что мы качественно пояснили происхождение серий молекулярных линий и полос сплошного спектра лишь для одного частного случая: атом В пребывает в первом стационарном состоянии, а варьируется энергия возбуждения Е*, которую приобретает атом А. Рассмотрение других вариантов даёт гораздо более богатую модель спектра молекулы АВ.
Предложенная модель даёт естественное качественное объяснение того, что называется электронно-колебательными спектрами молекул. Эта модель хороша уже тем, что она легко разрешает парадокс, который до сих пор не нашёл объяснения в рамках традиционного подхода, а именно: почему двухатомная молекула с одинарной связью, которая диссоциирует при энергии возбуждения, попадающей в континуум в области, скажем, 3 эВ, отнюдь НЕ диссоциирует при энергии возбуждения, скажем, 15 эВ. Однако, мы изложили идеализированную картину, при которой положения колебательных серий линий и полос на спектрограммах в точности соответствовали бы положениям характеристических линий атомов, входящих в состав молекулы. В действительности, точного соответствия не наблюдается, хотя специалисты давно обращали внимание на «генетическую связь между атомными и молекулярными уровнями» [К2].
В частности, предложенная модель объясняет, в первом приближении, происхождение участка излучения Н2 в области 7.4-10.1 эВ (см. Рис.5.6), где поглощение Н2 отсутствует. Заметим, что верхняя граница этого участка почти совпадает с энергией первого стационарного уровня атома водорода, равной 10.2 эВ. Логично допустить, что в названном спектральном диапазоне могут излучать те молекулы Н2, у которых один из атомов находится на первом стационарном уровне. Происходящие при этом процессы поясним с помощью Рис.5.7. До момента излучения t2, атом p1-e1 находится в основном состоянии и имеет энергию зарядового разбаланса Е*; атом же p2-e2 находится в первом стационарном состоянии и не имеет энергии зарядового разбаланса. В момент t2, при переформировании валентных связок, атом, включающий протон p2, оказывается в основном состоянии и с энергией зарядового разбаланса Е*. Таким образом, энергия связи в этом атоме увеличивается на величину разности между 10.2 эВ и Е* - что и означает излучение соответствующего кванта молекулой.
О т.н. вращательных спектрах.
При наличии у атома энергии возбуждения, работает Навигатор (3.4), который производит поиск атома-адресата, которому эта энергия возбуждения может быть переброшена. Мы полагаем, что, в ходе этого поиска, пространство вокруг возбуждённого атома сканируется «поисковыми волнами», которые имеют не физическую, а чисто программную природу. Вначале эти «волны» являются сферическими, расходясь от ядра возбуждённого атома со скоростью света в вакууме – будучи разделёнными промежутками времени, равными периоду колебаний возбуждения. Но каждый атом, накрываемый любой из этих первичных волн, при работе Навигатора считается источником вторичных волн с той же периодичностью – и в те места, где первичные и вторичные волны пересекаются, расчётная вероятность переброса увеличивается. Отсюда, для случая соседствующих атомов, вытекает резонансное соотношение, благодаря которому спектральный прибор, имеющий достаточно высокое разрешение, обнаружит расщепление молекулярной линии на множество сублиний.
В самом деле, пусть линия имеет среднюю длину волны λ=6000 Ангстрем, пусть межъядерное расстояние L=2.5 Ангстрем. Когда первая «поисковая волна» накрывает ядро невозбуждённого атома, от него начинает расходиться вторичная волна, которая накрывает ядро возбуждённого атома, от которого начинает расходиться новая вторичная волна, и т.д. Вторичные волны будут бегать между ядрами, и пусть очередная из них, исходящая от ядра возбуждённого атома, окажется в фазе с исходящей от него второй первичной волной. Пусть, при совместном накрытии ими ядра невозбуждённого атома, условие для идентификации адресата окажется выполненным, и квантовый переброс энергии возбуждения будет произведён. Поскольку первичные и вторичные «поисковые волны» движутся с одинаковой скоростью – скоростью света в вакууме – то для изложенного сценария необходимо, чтобы отношение длины волны λ к удвоенному межъядерному расстоянию 2L являлось целым числом. Отсюда и вытекает возможность расщепления линии на сублинии, у которых длины волн разделены промежутками по 2L. Так, в рассматриваемом случае, отношение λ/2L составляет К=2400. Если энергию ~2.0 эВ, соответствующую длине волны λ=6000 Ангстрем, поделить на К, то мы получим для энергетических интервалов между сублиниями величину ~8.3·10-4 эВ – которая характерна для вращательных спектров.
Полученное соответствие не следует рассматривать как доказательство того, что вращательные спектры обусловлены исключительно вышеописанными резонансами при циклическом обмене энергией возбуждения у пары связанных атомов. По-видимому, эти резонансы могут являться лишь одним из возможных механизмов, порождающих вращательные спектры. Но, если работает именно этот механизм, то знание величин интервалов между «вращательными» уровнями позволит, например, независимо определять межъядерные расстояния в молекулах.
Инфракрасный-микроволновый-радиочастотный резонансный ряд.
Если химическая связь, как изложено выше, представляет собой циклический процесс (5.7), при котором происходят перебросы переменного зарядового разбаланса в паре задействованных валентных связок «протон-электрон», то энергия возбуждения молекулы, т.е. энергия этого зарядового разбаланса, должна с очевидностью иметь ещё один набор резонансных значений. Для случая одинарной связи, эти резонансные значения определяются из условия, что на одном периоде колебаний зарядового разбаланса должны укладываться целые числа периодов связующих прерываний как у первого из связанных атомов, так и у второго, т.е.
(5.8)
где Ei1 и Ei2 – энергии ионизации первого и второго связанных атомов из стационарных состояний, в которых они пребывают, Е* - энергия возбуждения, M и N – целые числа. Если связана пара однотипных атомов, и если они пребывают в одинаковых стационарных состояниях, то Ei1=Ei2, и M=N, поэтому искомый ряд резонансных значений энергии возбуждения представляет собой последовательность частных от деления энергии ионизации на целые числа. Если же связаны разнотипные атомы, или если связанные однотипные атомы пребывают в различных стационарных состояниях, то Ei1 и Ei2 не равны друг другу, и практически невероятно, что они окажутся кратными – поэтому, строго говоря, в таком случае соотношения (2) не могут соблюдаться с абсолютной точностью. Но, при ненулевых ширинах энергетических уровней, на которых находятся связанные атомы, и при ненулевых ширинах линий искомых резонансов, подходящие пары чисел M и N непременно найдутся.
В любом из вышеперечисленных случаев, резонансным энергиям возбуждения будет соответствовать серия спектральных линий, сгущающихся в сторону увеличения длин волн (в отличие от «колебательных» линий, которые сгущаются в сторону уменьшения длин волн [К4]). Как можно видеть, линии резонансного ряда, о котором идёт речь, при достаточно больших длинах волн – т.е. в микроволновой или радиочастотной области – должны сливаться в сплошной спектр. Действительно, этот сплошной спектр хорошо известен специалистам по радиоспектроскопии. Между тем, этот сплошной спектр отнюдь не должен иметь места в рамках ортодоксального подхода – согласно которому, величины минимальных энергий возбуждения молекул дискретны, соответствуя вращательным квантам. Факт сплошного спектра молекулярного излучения-поглощения в длинноволновой области – важное свидетельство в пользу нашего подхода.

