- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Этот «цифровой» физический мир - Андрей Гришаев
Шрифт:
Интервал:
Закладка:
Заметим, что вывод об отсутствии энергии химических связей вполне согласуется с представлениями (5.6) о том, что, в отличие от ядерных и атомных структур, напрямую формируемых структуро-образующими алгоритмами, молекулы (за исключением биомолекул в одушевлённых организмах) образуются «сами по себе» - если это допускается физическими параметрами среды. Энергия структурных связей в веществе, как отдельная форма энергии, имеет место тогда, когда она, по логике «цифрового» мира, программно обеспечена: структуро-образующий алгоритм превращает в энергию связи часть энергии в другой форме – например, мы полагаем, что именно так формируется связь на дефекте масс (4.7). Энергия же химических связей программно не обеспечена – поэтому её существование нарушало бы закон сохранения энергии.
5.8. Разрешение парадоксов молекулярных спектров.
Предварительные замечания.
Поразительное свидетельство о том, что «энергия диссоциации» - при сообщении которой химическая связь разрывается – совсем не равна глубине потенциальной ямы, в которой находились связанные атомы, дают молекулярные спектры излучения-поглощения. Для сравнения: в любом связанном состоянии атомарного электрона, его энергия связи всегда равна минимальной энергии, при сообщении которой электрон отрывается от атома. Разумеется, энергии ионизации атома из возбуждённых состояний меньше, чем из основного. Но уровень, на который следует «вытащить» электрон для его отрыва – один для всех связанных состояний. Не наблюдалось случаев, чтобы, при сообщении атому энергии, существенно большей, чем энергия ионизации из текущего связанного состояния, атомарный электрон вновь оказывался бы в связанном состоянии. А для молекул подобный феномен нормален – даже в случае одинарной связи.
Действительно, справочные значения энергий диссоциации обычно приводятся для основного электронного состояния молекулы – самого сильно связанного. Но, как следует из молекулярных спектров (см. Рис.5.6, а также, например, [П4]), несколько выше уровня этой первой диссоциации может находиться дно следующего устойчивого электронного состояния, со своим уровнем диссоциации, а выше этого уровня – следующее электронное состояние, и т.д. Нередки ситуации, когда у молекулы, при энергии диссоциации для основного состояния, скажем, 3 эВ, имеются устойчивые электронные состояния, которые выше основного состояния, скажем, на 15 эВ [Т2,Ф4]. Для подобных случаев, пусть сторонники существования энергии химической связи попробуют ответить на вопрос о том, какова же глубина потенциальной ямы, в которой находятся связанные атомы в основном электронном состоянии молекулы – 3 эВ или 15 эВ. Каким образом эта молекула, которая диссоциирует при энергии возбуждения 3 эВ, способна, отнюдь не диссоциируя, поглотить и переизлучить квант в 15 эВ?
Мы этот парадокс устраняем: энергия химической связи иллюзорна (5.7) – а, значит, иллюзорны и изменения этой энергии при молекулярном излучении-поглощении. Тогда молекулярные спектры свидетельствуют вовсе не о том, что, при излучении-поглощении квантов молекулой, происходят соответствующие изменения энергии связи атомов.
Что же касается ортодоксов, которые энергию химической связи считают реальностью, то они названный парадокс не устраняют и не разрешают – они про него просто помалкивают. Каждому электронному состоянию молекулы ставят в соответствие потенциальную кривую типа потенциала Ми (5.6.1). Считается, что устойчивость молекулы не может быть обеспечена иначе, как с помощью подобной потенциальной ямы – у которой по оси абсцисс отложено межъядерное расстояние. Соответственно, допускаются колебания связанных атомов – около равновесного значения этого расстояния. Полагают, что с помощью квантованных значений энергии таких колебаний объясняется происхождение серий колебательных линий. Но, на наш взгляд, такой подход совершенно неадекватен реалиям. Гладкая и непрерывная кривая потенциальной ямы годится для решения задачи о механических колебаниях – энергия которых зависит от двух параметров, амплитуды и частоты, причём эта энергия отнюдь не квантуется, изменяясь непрерывно. Совсем другое дело – дискретные уровни энергии, переходам между которыми соответствуют кванты, энергии которых зависят не от двух параметров, а только от одного: от частоты. Налицо фундаментальное противоречие: ряды дискретных колебательных энергий молекулы не могут быть обусловлены механическими колебаниями!
Но, закрыв глаза на некорректность смешения здесь концепций классических колебаний и квантовых скачков, специалисты проделали огромную работу по согласованию картин колебательных термов и параметров молекулярных потенциальных кривых [Е2]. Так, например, для основного состояния молекулы H2, частота малых собственных колебаний, ~2·1013 Гц, рассчитанная через вторую производную потенциальной кривой ([К4,К2]) и приведённую массу двух атомов водорода, совпадает с частотой, которая соответствует, через постоянную Планка, энергии первого колебательного уровня [Т2,Ф4]. На наш взгляд, подобные результаты подгонок – физически бессмысленны. Ведь теоретики не дали внятных разъяснений – например, для случая той же молекулы H2, имеющей нулевой дипольный момент [Т2] – каким образом при механических вибрациях или ротациях связанной пары электрически нейтральных частиц вещества может поглощаться и излучаться электромагнитная энергия.
Вот почему мы сознательно отказываемся от традиционной модели, согласно которой механические вибрации и ротации молекул имеют отношение к колебательным и вращательным спектрам. Тайна серий молекулярных линий приоткрывается, если допустить, что в возбуждённой молекуле не происходит ничего, кроме вышеупомянутого циклического процесса перебросов энергии возбуждения с атома на атом – а серии линий молекулярного излучения-поглощения свидетельствуют всего лишь о тех или иных резонансах у этого циклического процесса.
Электронно-колебательные спектры и полосы сплошного спектра.
Весьма распространёнными фрагментами молекулярных спектров являются серии т.н. колебательных линий, сгущающихся в сторону уменьшения длин волн, и переходящих в полосу сплошного спектра. При попадании энергии возбуждения в такой сплошной участок, молекула диссоциирует. Причём, даже в случае одинарной связи, таких участков сплошного спектра может быть несколько – что, как отмечалось выше, порождает парадокс с неоднозначностью «энергии химической связи».
Между тем, этот феномен находит простое качественное объяснение на основе модели химической связи (5.7). Примем во внимание то обстоятельство, что, при циклических переключениях энергии возбуждения у пары связанных атомов, по крайней мере, один из них может пребывать не в основном своём состоянии, а в одном из вышележащих стационарных. При этом, как отмечалось ранее (5.1), энергия возбуждения у этого атома, т.е. энергия переменного зарядового разбаланса, отсчитывается от нуля, соответствующего задействованному стационарному уровню. Если эта энергия возбуждения безостановочно циклически перебрасывается на соседствующий атом и обратно, то пребывание атомарной валентной связки «протон-электрон» на возбуждённом стационарном уровне может длиться неопределённо долго, обеспечивая устойчивую химическую связь.
Теперь обратимся к Рис.5.8, на котором схематически изображены стационарные уровни энергии у двух связанных атомов, А и В. Пусть атом В пребывает на стационарном уровне В1, а атом А – в основном состоянии А0. Пусть энергия ионизации атома В с уровня В1 меньше, чем энергия уровня А1 в атоме А. Можно видеть, что энергия возбуждения Е*, которой обмениваются связанные атомы, имеет выделенные резонансные значения, которые соответствуют переходам в атоме В – с уровня В1 на вышележащие уровни В2,В3, и т.д. Эти резонансные значения и должны давать серию молекулярных линий поглощения, сгущающихся к порогу диссоциации D0 – который достигается, когда энергия возбуждения Е* становится равна разности энергий уровней В и В1. Диссоциация молекулы АВ является при этом следствием ионизации атома В, и можно видеть, что, при превышении энергией возбуждения Е* разности энергий уровней В и В1, начинается участок сплошного спектра, схематически обозначенный косой штриховкой. Верхняя граница этого участка должна соответствовать энергии уровня А1 – которая, как мы оговорили выше, превышает энергию ионизации атома В с уровня В1. Впрочем, нередки ситуации, когда энергия уровня А1 меньше, чем энергия ионизации атома В с уровня В1. Тогда порог диссоциации не достигается, и полоса сплошного спектра отсутствует.

