- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл
Шрифт:
Интервал:
Закладка:
Теперь нам надо рассмотреть, что произойдёт в случае очень большого числа взаимодействующих атомов натрия. Возьмём стержень длиной 10 см и диаметром 1 мм, состоящий из натрия (см. рис. 19.1). При таких размерах число атомов Na, которые будет содержать стержень, составит N=2∙1021 (два миллиарда триллионов) атомов Na. Два миллиарда триллионов атомных 3s-орбиталей объединяются в два миллиарда триллионов молекулярных орбиталей. Как и в случае МО бензола и нафталина, МО натриевого стержня следует считать распространяющимися на всю систему, то есть на весь кусок металла.
Кусок металла содержит огромное количество энергетических уровней МО, называемое зоной
На рис. 19.3 показаны энергетические уровни этой системы. Каждый из N атомов натрия обладает электроном на атомной 3s-орбитали. В отсутствие взаимодействия между атомами все эти атомные орбитали имеют одинаковую энергию. На рисунке это изображено группой близко расположенных линий с левой стороны. Чтобы показать наличие большого числа атомных уровней, линии нарисованы по отдельности, но все они обладают одинаковой энергией. Когда атомы взаимодействуют, N атомных орбиталей образуют N МО. Как мы уже видели ранее на примере молекул, МО имеют разные энергии. У некоторых из этих МО энергия ниже, чем у атомных орбиталей, у других — выше. Это изображено в правой части рисунка более широким набором по-прежнему тесно расположенных линий. Система энергетических уровней МО на рис. 19.3 такая же, как на рис. 18.8, 18.9 и 19.2, с той лишь разницей, что имеется намного больше энергетических уровней, интервалы между которыми намного меньше. В этом случае говорят о зоне состояний.
Квантовая теория говорит, что ширина зоны состояний, то есть разность энергии между МО с наибольшей и наименьшей энергией, всего в несколько раз больше, чем разность в энергии двух МО, возникающих при взаимодействии двух атомов натрия (см. рис. 19.2, вверху). Таким образом, в нашем примере с двумя миллиардами триллионов атомов Na в относительно узком диапазоне энергий имеется два миллиарда триллионов энергетических уровней. В результате эти уровни оказываются расположенными так близко, что энергия внутри зоны меняется фактически непрерывно.

Рис. 19.3. В куске металлического натрия имеется N атомов. У каждого атома есть электрон на 3s-орбитали. Все вместе они представлены тесно расположенными линиями в левой части рисунка. Все они обладают одинаковой энергией. N атомных 3s-орбиталей взаимодействуют, образуя N молекулярных орбиталей, энергетические уровни которых показаны справа. Энергетические уровни МО настолько близки друг к другу, что их энергии образуют практически непрерывную зону состояний. Уровень Ферми соответствует самой высокой заполненной орбитали
Расселение электронов
Итак, есть N атомов натрия, каждый с одним 3s-электроном. Нам требуется поместить эти N электронов на соответствующие МО, как мы это делали с небольшими молекулами в главах 12 и 13 и как показано на рис. 18.8 и 18.9. Делокализованные МО металлического натрия подобны любым другим орбиталям, а значит, они подчиняются трём правилам расселения электронов, которые обсуждались в главе 11: сначала заселяются уровни с наименьшей энергией; на одной орбитали может находиться не более двух электронов, причём они должны иметь спаренные спины (принцип запрета Паули); по возможности спины не спариваются (правило Хунда).
На рис. 19.3 показано расселение электронов. Первый электрон занимает самый нижний энергетический уровень. Следующий электрон заселяется на тот же уровень с противоположным спином, то есть на нём будет одна стрелка вверх и одна стрелка вниз. Три электрона не могут располагаться на низшем энергетическом уровне, поскольку это нарушило бы принцип Паули. Поэтому третий электрон заселяется на уровень, который на один выше самого нижнего. Четвёртый электрон размещается на том же уровне со спаренным спином. Так продолжается до тех пор, пока по молекулярным орбиталям не будут размещены все N электронов.
Уровень Ферми
Имеется N энергетических уровней МО и N электронов. Однако на каждом уровне может находиться два электрона, поэтому заполнена будет только нижняя половина зоны энергетических уровней. Это похоже на бензол (см. рис. 18.8) и нафталин (см. рис. 18.9), у которых тоже заполнена только нижняя половина МО. Энергия самой высокой из заполненных орбиталей называется уровнем Ферми — в честь Энрико Ферми (1901–1954). Ферми как физик работал во многих областях науки, включая теорию твёрдого тела, в частности металлов, и теорию ядерных реакций. Он внёс значительный вклад в развитие ядерной энергетики. В 1938 году он получил Нобелевскую премию по физике
«за доказательство существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами».
Как мы увидим, уровень Ферми чрезвычайно важен.
Уровень Ферми — это наивысшая заполненная МО при абсолютном нуле температуры, то есть при температуре 0 K, где K означает кельвины. 1 K равен 1 °C, однако нуль шкалы Кельвина соответствует абсолютному нулю температур, то есть 0 K — это −273 °C. Мы кратко обсуждали, как тепло в системах молекул, таких как вода, вызывает дрожание молекул. В главе 15 отмечалось, что тепловые движения молекул воды ответственны за разрушение водородных связей между ними. По мере понижения температуры тепла (тепловой энергии) становится всё меньше, и движение атомов и молекул замедляется. Абсолютный нуль (0 K) — это температура, при которой вообще нет тепла, заставляющего атомы и молекулы двигаться. Уровень Ферми определяется именно как энергия наивысшей заполненной МО при 0 K.
Как электроны движутся сквозь металл
Как показано на рис. 19.1, электроны входят в металлический стержень с одной стороны и покидают его с другой. Это возможно, поскольку электроны находятся на делокализованных МО, растянутых на весь кусок металла. Однако квантовая теория показывает, что если все электроны занимают только МО ниже уровня Ферми, то они не будут двигаться в каком-либо определённом направлении. В реальности металлы трёхмерны, но в данном обсуждении мы будем рассматривать только одно измерение за раз. В нашем металлическом стержне даже тогда, когда он не присоединён к батарее, электроны, находящиеся на МО, тем не менее постоянно движутся. Хотя электроны описываются в терминах квантовомеханических волновых функций, они обладают кинетической энергией. Поэтому можно подсчитать скорость электрона. Электроны на некоторых МО можно рассматривать как движущиеся вправо. Имеются соответствующие им МО с точно такой же энергией, но с электронами, движущимися влево. Когда все МО заполнены, как показано на рис. 19.3, электрического тока не будет, поскольку одинаковое число электронов движется влево и вправо. В трёхмерном случае для любого выбранного направления у электрона будет равная вероятность двигаться в этом направлении или в диаметрально противоположном.
Однако когда металлический стержень на рис. 19.1 присоединяется к батарее, всё меняется. Один конец стержня соединён с положительным полюсом батареи, а другой — с отрицательным. Подключение к батарее меняет условия существования электронов. Без батареи электроны ощущают положительные заряды атомов натрия и отрицательные заряды других электронов. Любой отдельный электрон в середине стержня не чувствует разницы между правым и левым. Однако при подключении к батарее появляется дополнительный действующий фактор — созданное ею внутри металла электрическое поле. Электроны притягиваются к положительному концу и отталкиваются от отрицательного конца. В результате система меняется, поскольку некоторые электроны оказываются на уровнях выше уровня Ферми, который был без батареи (см. рис. 19.4). Состояние электронов в системе меняется так, что становится больше электронов, движущихся к положительному концу металлического стержня, чем движущихся к отрицательному.

