- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл
Шрифт:
Интервал:
Закладка:
«за вклад в понимание электронной структуры и строения молекул, особенно свободных радикалов».
Работа Херцберга по определению строения молекул основывалась во многом на его объяснении колебательных спектров молекул.
Энергия классического мяча для ракетбола меняется непрерывным образом, но энергия квантового мяча (частицы в ящике) привязана к энергетическим уровням (см. рис. 8.6). На рис. 17.3 изображена потенциальная кривая для вибрационной моды молекулы, подобная представленной на рис. 12.1, но теперь на ней также отмечены первые несколько колебательных энергетических уровней. И вновь, как и в случае частицы в ящике, низший энергетический уровень n=0 не соответствует нулевой энергии.
Энергия квантовых колебаний
Простейшая модель для колебательных уровней энергии даёт следующие их значения:
E=h∙ν∙(n+½),
где h — постоянная Планка, ν — частота колебаний, n — квантовое число, которое может принимать значения 0, 1, 2 и т. д. При n=0 энергия равна ½h∙ν. При n=1 энергия равна 3/2h∙ν. Таким образом, разность в энергии между низшим энергетическим уровнем и первым возбуждённым колебательным состоянием равна h∙ν. В этой модели все энергетические уровни отстоят друг от друга на одну и ту же величину h∙ν. В реальных молекулах c увеличением квантового числа энергетические уровни становятся ближе друг к другу. Для наших целей важна только разность между низшим энергетическим уровнем и первым возбуждённым.
Деформационная мода CO2 поглощает на пике земного черноте́льного спектра
В нижней части рис. 17.3 изображены первые два колебательных энергетических уровня. Свет будет поглощаться при энергии, равной разности между этими уровнями, которая обозначена пунктирной стрелкой. Поскольку эта разность в энергии равна ∆E=h∙ν=c∙h/λ, измерение частоты (ν) и длины волны (λ) света, при которой он поглощается, даёт нам частоту осциллятора. Как показано на рисунке, для деформационных мод углекислого газа ∆E=667 см−1. Деформационные моды имеют одинаковую частоту, поскольку различаются только направлением изгиба. (Энергию и частоту можно характеризовать числом колебаний волны на единицу длины (см−1), если разделить энергию ∆E на c∙h.) Частота света, поглощаемого изгибами молекулы CO2, почти в точности совпадает с пиком земного черноте́льного излучения. Растянуть химическую связь намного труднее, чем деформировать (то есть на это требуется больше энергии). Поэтому симметричная и асимметричная моды углекислого газа имеют намного более высокие частоты. Ни одна из них не даёт существенного вклада в поглощение земного черноте́льного излучения.

Рис. 17.3. Вверху: кривая потенциальной энергии, показывающая, как энергия зависит от длины химической связи, с отмеченными на ней колебательными квантовыми уровнями. Показаны только несколько первых энергетических уровней. Внизу: низший колебательный энергетический уровень n=0 и первый возбуждённый уровень n=1 для деформационной моды молекулы CO2 (см. рис. 17.2). Данный переход (стрелка) будет поглощать и земное черноте́льное излучение (см. рис. 17.1)
Парниковый эффект CO2 является кванотовомеханическим
Важнейший факт состоит в том, что на са́мом фундаментальном уровне вклад CO2 в парниковый эффект и глобальное изменение климата является принципиально квантовомеханическим. Во-первых, связи, которые разрываются и создаются при горении природного газа, нефти и угля, определяются квантовой механикой, которая порождает молекулярные орбитали и определяет силу химических связей. От силы этих химических связей зависит количество энергии, высвобождаемой в расчёте на одну получающуюся молекулу CO2, а на ещё более фундаментальном уровне форма спектра испускаемого Землёй черноте́льного излучения определяется квантовыми эффектами.
Черноте́льное излучение обсуждалось в главах 4 и 9. Объяснение Планком формы спектра чёрного тела и его изменения с температурой светящегося объекта было первым приложением квантовой теории. Полоса поглощения CO2 располагается вокруг волны с частотой 667 см−1 в результате квантования колебательных уровней молекул — чисто квантового эффекта. Деформационные моды молекулы CO2 характеризуются квантовым переходом между колебательными состояниями n=0 и n=1, энергия которого соответствует ключевой частоте земного черноте́льного спектра. По мере того как мощные электростанции, многочисленные автомобили и самолёты, горящие тропические леса и т. п. выделяют углекислый газ, квантовое взаимодействие между CO2 и земным инфракрасным черноте́льным излучением порождает парниковый эффект.
18. Ароматические молекулы
В главах 13 и 14 говорилось о двойных связях, а в главе 16 мы узнали о том, что двойные связи играют фундаментальную роль в определении биологических свойств жиров. Среди обсуждавшихся молекул были полиненасыщенные жиры, имеющие несколько двойных связей, однако эти двойные связи всегда разделяются некоторым числом одиночных связей. Например, на рис. 16.5 изображена шаростержневая модель молекулы ДГК — полиненасыщенной жирной кислоты с шестью двойными связями. Как легко заметить, между любыми двумя её двойными связями находятся две одиночные связи.
В этой главе мы познакомимся с разнообразными проявлениями множественных двойных связей, которые не разделяются несколькими одиночными связями. Квантовая теория показывает, что связи такого рода, обнаруживаемые в молекуле бензола и многочисленных других «ароматических» молекулах, могут объяснить электропроводность металлов, а также различия между металлами, полупроводниками и диэлектриками, которые будут обсуждаться в главе 19. Для понимания ароматических молекул и электропроводности металлов нам надо начать обсуждение с природы молекулярных орбиталей, которые возникают при взаимодействии одинаковых атомных орбиталей множества атомов.
Бензол: классический ароматический углеводород
На рис 18.1 изображена молекулярная диаграмма бензола, который состоит из шести атомов углерода и шести атомов водорода. Экспериментально было определено, что молекула бензола имеет правильную шестиугольную форму, а все её атомы (и углерод, и водород) лежат в одной плоскости. Угол между связями одного атома углерода с двумя ближайшими соседями составляет ровно 120°, и угол, образованный связью с водородом и с соседним углеродом, тоже равен 120°. Таким образом, три связи, образованные любым из атомов углерода, имеют треугольную геометрию, а значит, они образованы с помощью трёх sp2-гибридизированных атомных орбиталей каждого атома углерода. Итак, у всех атомов углерода остаётся по одной неиспользованной 2p-орбитали, расположенной перпендикулярно плоскости страницы. Обозначим её 2pz. Мы знаем, что углерод всегда образует четыре связи. Здесь углерод связан лишь с тремя другими атомами с помощью трёх связей. 2pz-орбитали должны служить для образования двойных π-связей, но где они располагаются в молекуле?

Рис. 18.1. Геометрия молекулы бензола C6H6. Бензол имеет форму правильного плоского шестиугольника

