- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл
Шрифт:
Интервал:
Закладка:

Рис. 18.9. Схема энергетических уровней молекулярных π-орбиталей нафталина. Имеются пять связывающих и пять разрыхляющих МО. Слева изображены десять π-электронов, заполняющих пять связывающих МО. Справа показан результат поглощения света: один из электронов увеличил свою энергию и поднялся на разрыхляющую МО
Нафталин с позиций задачи о частице в ящике
С помощью современной квантовой теории и компьютеров строение нафталина можно рассчитать с высокой точностью. Теория даёт значения длины связей и угла между ними. Например, длину связей можно вычислить с точностью до 0,001 нм, то есть до тысячной доли нанометра. На основе результатов этих вычислений можно также с высокой точностью рассчитать частоты, на которых поглощается свет. В вычислениях используются значения массы, числа электронов и заряда ядер. Расчёты охватывают как σ-, так и π-связи. Как уже говорилось, π-электроны не локализованы у одного или двух центров атомов углерода, а размазаны по всей углеродной структуре молекулы. Наименьшая энергия поглощения для нафталина, соответствующая переходу с ВЗМО на НСМО, характеризуется длиной волны 320 нм, которая лежит в ультрафиолетовой части оптического спектра.
Можно грубо рассчитать её, рассматривая π-электроны как частицы в ящике. В главе 8 задача о частице в ящике описывалась во всех подробностях. Если рассмотреть переход с ВЗМО на НСМО как переход электрона в ящике с уровня n=1 на уровень n=2 (см. рис. 8.7), то можно воспользоваться формулами, выведенными сразу после рис. 8.7. Для этого перехода получаем
∆E=3∙h2/8∙m∙L2,
где h — постоянная Планка, m — масса электрона, а L — длина ящика. Здесь мы примем значение L равным 0,51 нм, то есть поперечнику углеродной структуры нафталина. Тогда
∆E = 3∙(6,6∙10−34)2/8∙(9,1∙10−31)∙(0,8∙10−9)2 = 6,9∙10−19.
Преобразовав эту энергию в частоту путём деления на h, получаем: ν=1,04∙1015 Гц. Тогда длина волны поглощаемого света составит: λ=2,87∙10−7 м = 287 нм. Эта длина волны лежит дальше в ультрафиолетовой области, чем реальная, но всё же она не очень далека от наблюдаемого значения.
Расчёт для частицы в ящике показывает, что если частица с массой электрона заключена в ящике размером с молекулу нафталина, то первая линия поглощения будет находиться в ультрафиолетовом диапазоне. Удовлетворительная точность, полученная для нафталина при расчёте по модели частицы в ящике, представляет собой до некоторой степени случайную удачу. Даже если моделировать нафталин как частицу в ящике, это должен быть двух- или трёхмерный ящик, а не одномерный. Подобные расчёты обычно приводят к существенным ошибкам. Однако точные квантовомеханические вычисления позволяют определить строение молекулы и значительно более точные частоты поглощения света. Кроме того, если, например, заменить водород фтором, то квантовая теория точно предскажет, насколько изменятся частоты поглощения света фторнафталином по сравнению с обычным нафталином.
19. Металлы, изоляторы и полупроводники
На рис. 19.1 схематически изображена батарея, присоединённая к металлическому стержню. В качестве примера мы будем рассматривать натрий, но стержень может быть сделан из любого металла. Положительный полюс батареи вытягивает электроны из металлического стержня. Чтобы стержень не приобретал при этом положительный заряд, который станет притягивать электроны и остановит поток, он должен быть присоединён к отрицательному полюсу батареи.

Рис. 19.1. Металлический стержень, сделанный, например, из натрия, подключён проводами к батарее. Отрицательно заряженные электроны вытягиваются из металлического стержня положительным полюсом батареи. Электроны поступают в стержень из отрицательного полюса батареи
Электроны перетекают из отрицательного полюса батареи в положительный по стержню, сохраняя его нейтральность, то есть не позволяя ему приобретать электрический заряд. С тем же успехом вместо стержня электроны могут течь по спирали электрической лампочки фонарика. Проходящий по ней поток электронов заставляет спираль разогреваться до высокой температуры, испуская черноте́льное излучение в видимом диапазоне спектра.
Металлы
Делокализация молекулярных орбиталей в металлах
Каким образом электроны могут двигаться сквозь кусок металла? В чём разница между металлом и диэлектриком? Что такое полупроводники? Почему металлы нагреваются при движении электронов? Что такое сверхпроводимость?
Чтобы ответить на первые три вопроса, надо расширить обсуждение делокализованных молекулярных орбиталей, обнаруженных нами в молекулах ароматических соединений, таких как бензол и нафталин (см. главу 18), на МО макроскопических кусков металла и других материалов. Для ответа на два последних вопроса понадобится перейти от обсуждения влияния тепловых колебаний атомов, составляющих кусок металла, к обсуждению движения электронов в металле.
В главе 10 при обсуждении молекулы водорода мы узнали, что две атомные орбитали водорода объединяются и образуют две молекулярные орбитали — связывающую и разрыхляющую. В случае бензола мы увидели, что шесть атомных pz-орбиталей — по одной от каждого атома углерода — образуют три связывающие и три разрыхляющие МО. У нафталина десять атомных pz-орбиталей объединяются и образуют десять МО — пять связывающих и пять разрыхляющих. В каждом случае эти МО охватывают всю молекулу. В главе 11, посвящённой Периодической таблице элементов, мы говорили, что натрий (Na) является металлом, поскольку имеет один электрон (3s) сверх замкнутой неоновой конфигурации оболочки. Na легко отдаёт этот электрон для образования солей, таких как поваренная соль NaCl. В воде NaCl растворяется и превращается в ионы Na+ и Cl−. Как уже говорилось, в твёрдом состоянии Na является металлом и проводит электричество, и теперь мы готовы объяснить почему.
Рассмотрим для начала 3s-орбитали двух атомов натрия, которые находятся рядом друг с другом и взаимодействуют. У натрия 3s-электрон является валентным, то есть участвует в образовании связей. В верхней части рис. 19.2 показаны энергетические уровни двух атомных 3s-орбиталей, объединяющихся в молекулярные орбитали. Энергетический уровень одной из этих МО ниже, чем у атомных орбиталей. Это связывающая МО. Другая МО имеет более высокий уровень энергии — это разрыхляющая орбиталь. В средней части рисунка видно, что три атомные орбитали образуют три МО. Внизу представлена ситуация с шестью взаимодействующими атомами натрия. Шесть атомных 3s-орбиталей объединяются в шесть МО — три связывающие и три разрыхляющие.

Рис. 19.2. Вверху: две атомные 3s-орбитали натрия взаимодействуют и порождают две молекулярные орбитали — одну с более низкой энергией (связывающую) и одну с более высокой (разрыхляющую). В середине: три атомные 3s-орбитали взаимодействуют и образуют три МО. Внизу: шесть атомных 3s-орбиталей объединяются в шесть МО
Каждый атом Na обладает одним 3s-электроном, который пойдёт на заполнение МО. В системе с шестью атомами натрия для заполнения МО будет шесть электронов. Каждая МО может принять два электрона с противоположными спинами (один направлен вверх, другой — вниз). Поэтому электронами будут заполнены три МО с наименьшими энергиями, то есть связывающие МО. Три МО с более высокими энергиями останутся пустыми.

