- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл
Шрифт:
Интервал:
Закладка:
Наш опыт и фундаментальная природа систем, подчиняющихся законам классической механики, позволили нам выработать интуицию, описывающую поведение многих повседневно окружающих нас вещей. Даже новичок при игре в бильярд быстро схватывает, что если направить биток так, чтобы он ударил по левой части другого шара, тот отскочит вправо. Столкновение бильярдных шаров — это классический процесс, и шары движутся в соответствии с законами классической механики по чётко определённым траекториям. Однако мир вокруг нас, управляемый законами квантовой механики, по большей части лежит за рамками наших представлений и понимания. Когда дело доходит до явлений, которые определяются свойствами абсолютно малых систем, большинство людей подобны младенцу, глядящему на Луну: они видят явление, но не понимают того, что видят.
Понимание того, что мы видим вокруг себя, требует некоторого знания квантовой механики
Почему это должно нас беспокоить? Можно прожить всю жизнь, видя Луну и не имея никакого представления о том, чем она в действительности является. Человек может просыпаться утром, идти на работу, есть, спать, иметь семью, не зная, что представляет собой Луна, и быть при этом совершенно счастливым. Можно также не иметь никакого понятия о том, благодаря чему вещи вокруг нас обретают свои свойства. Мы живём в море физических явлений, которое качает нас на своих волнах. Мы можем оказаться не способны управлять физическим миром вокруг нас, но разумно ли полностью отказываться понять его? Хотим ли мы уподобляться младенцу или, ещё хуже, взрослому, не имеющему представления о Луне? Действительно ли мы не хотим иметь никакого понятия о том, почему нагревательный элемент в электрической печи становится горячим? Я считаю, что мир становится интереснее, когда мы проявляем некоторое уважение к природе окружающих нас вещей. Физический мир — от биологических молекул до электрической проводимости — управляется квантовыми явлениями. И раз уж мы плывём по океану квантовой физики, некоторое знание квантовой теории только повышает нашу оценку чудес природы.
Пробившись через предыдущие главы, вы в своём квантовом мышлении выросли от младенца до взрослого. Теперь вы понимаете, что такое цвет. Вернёмся к первой фразе этой книги. Почему вишня красная, а черника синяя? Вопрос в том, чтó придаёт цвет предметам и чтó делает вещи разноцветными. Ответ в том, что вещество состоит из атомов и молекул. В отличие от классической механики, где энергия меняется непрерывным образом, атомы и молекулы обладают дискретными уровнями энергии. Свет тоже не непрерывен. Он поступает дискретными пакетами, которые называются фотонами. Фотон имеет определённую энергию, а значит, и определённый цвет. Поскольку энергия должна сохраняться, фотоны могут поглощаться атомами и молекулами, составляющими материю, только когда энергия фотонов совпадает с разницей в энергии между двумя атомными или молекулярными квантовыми энергетическими уровнями. При таком совпадении фотон может поглотиться, и тогда система переходит с низшего энергетического уровня на более высокий. Фотоны, которые не соответствуют разности энергетических уровней, отражаются от предмета. Поэтому если интервалы между энергетическими уровнями молекул таковы, что поглощается красный свет, то синий отражается и объект выглядит синим. Если же интервалы между энергетическими уровнями таковы, что поглощает синий свет, тогда отражается красный свет и объект выглядит красным.
Энергетические уровни и цвета связаны с волновой природой частиц
Занявшись вопросом о цвете предметов немного подробнее, мы в главе 8 обсудили одномерную задачу о частице в ящике. Мы узнали, что абсолютно малые «частицы» — это не частицы в повседневном, классическом смысле. В действительности это волны или волновые пакеты, которые более или менее локализованы в пространстве. В задаче о частице в ящике возможны лишь волны определённых форм. В трёхмерной системе, такой как атом водорода, обсуждавшийся в главе 10, формы этих волн намного сложнее, но и тут существуют лишь некоторые формы, называемые орбиталями. Это верно и для более крупных атомов и молекул, где молекулярные электронные волны описываются молекулярными орбиталями. С электронными волнами (волновыми функциями) в атоме или молекуле связаны строго определённые значения энергии, или энергетические уровни. Мы говорим, что энергия квантуется, то есть меняется дискретными шагами. Дискретные квантовые энергетические уровни — это одно из главных отличий квантовой механики от классической. В классической механике энергия меняется непрерывным образом.
Мы решили квантовую задачу о частице в ящике и обнаружили, что энергетические уровни зависят от размера ящика. В большом ящике (в крупной молекуле) энергетические уровни разделены меньшими интервалами, чем в маленьком. Результат, применимый к реальным молекулам, а не только к частице в ящике, состоит в том, что крупные молекулы тяготеют к поглощению света в красной части спектра. Красный свет обладает более низкой энергией, а для крупных молекул характерны относительно небольшие интервалы между энергетическими уровнями. Молекулы поменьше поглощают свет в голубой части спектра, поскольку различие в энергии между молекулярными уровнями у них больше, а голубой свет обладает большей энергией, чем красный. Самые маленькие молекулы, такие как бензол (см. главу 18), поглощают в ультрафиолетовой части спектра. Поэтому они не вызывают поглощения видимого света. Кристаллы из маленьких молекул, таких как нафталин (применяемый против моли), выглядят белыми потому, что они совершенно не поглощают видимый свет. Их энергетические уровни разнесены слишком сильно, и весь видимый свет отражается от таких кристаллов, отчего они выглядят белыми. По той же причине кристаллы соли в солонке белого цвета, и белый цвет кристаллов сахара тоже связан с этим. И соль, и сахар имеют большие интервалы между энергетическими уровнями и поглощают свет в ультрафиолетовом диапазоне, а цвета видимого света отражают.
Квантовые механизмы скрепляют атомы между собой и определяют форму молекул
Мы знаем, что удерживает атомы в молекулах, что придаёт молекулам их форму и почему форма молекул так важна. Мы видели, что электронные волны атомов объединяются и порождают молекулярные орбитали. Совместное использование электронов атомами на молекулярных орбиталях может приводить к образованию химических связей, которые скрепляют атомы в молекулах. В главах 12–14 мы довольно подробно рассматривали молекулярные орбитали. Выяснилось, что они бывают двух типов: связывающие и разрыхляющие. Размещая электроны надлежащим образом на простой диаграмме энергетических уровней молекулярных орбиталей, можно получить большое количество информации.
В молекуле водорода (см. главу 12) два электрона от двух атомов водорода занимают молекулярную орбиталь с наименьшей энергией, которая является связывающей МО. В результате образуется ковалентная связь, в рамках которой атомы совместно используют пару электронов. Но те же соображения позволяют нам понять, почему не существует двухатомной молекулы гелия. Каждый атом гелия вносит в гипотетическую двухатомную молекулу по два электрона. Первые два из них занимают связывающую МО, но в силу принципа запрета Паули другие два электрона должны занять разрыхляющую МО. В совокупности это приводит к отсутствию связи, и молекулы He2 не существует. Ковалентная химическая связь — это сугубо квантовое явление, не имеющее объяснения в классической механике.
Для атомов крупнее водорода объединение различных s и p атомных орбиталей порождает гибридные орбитали разной формы. Объединение разнообразных гибридных атомных орбиталей в молекулярные орбитали ответственно за тип образующихся связей (одиночных, двойных, тройных) и форму молекул. Мы уделили особое внимание органическим молекулам, то есть молекулам, состоящим в основном из углерода, водорода, кислорода и нескольких других элементов. Органические молекулы важны, поскольку они составляют основу жизни, а также ряда материалов, таких как пластмассы. Выяснилось, что в них очень большое значение имеют типы связей. Молекула легко может вращаться вокруг одиночной углерод-углеродной связи, меняя свою форму, но вращаться вокруг двойной углерод-углеродной связи она не может. Неспособность органических молекул вращаться вокруг двойных углерод-углеродных связей играет ключевую роль в биологии.

