- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой
Шрифт:
Интервал:
Закладка:
Вот вам небольшая задача. Перейдем к рулетке. У вас есть 20 долларов. Ваша цель – по возможности удвоить эту сумму. Если вы поставите на красное и оно выиграет, вы получите в два раза больше, чем поставили. Какая стратегия имеет больше шансов на выигрыш? Стратегия А: поставить сразу все деньги на красное. Стратегия Б: каждый раз ставить на красное по одному доллару.
На первый взгляд может показаться, что никакой разницы нет, но у рулеточного колеса есть одна особенность. На нем расположены 36 чисел, половина из которых красные, а половина – черные, но, кроме того, есть еще 37-е число – зеро (0); его ячейка зеленая[107]. Если шарик попадает на него, вы теряете деньги, на что бы вы их ни поставили, красное или черное. В этом случае заведение обыгрывает всех[108]. Казалось бы, ничего страшного, но казино вычислили, что зеро открывает им шорткат к прибыли. Во всяком случае, в долгосрочной перспективе!
Поэтому шансы выигрыша и проигрыша при ставке на красное не равны. Вероятность выигрыша чуть меньше: она составляет 18/37. Предположим, вы ставите по 1 доллару на красное при 37 запусках колеса, и по странному стечению обстоятельств каждое из чисел, имеющихся на колесе, выигрывает по одному разу. Тогда в 18 случаях вы выигрываете по 1 доллару, но в 19 проигрываете по 1 доллару, и в результате у вас остается всего 36 долларов. Значит, с каждой 1-долларовой ставки вы, по сути, платите заведению по 1/37 ≈ 0,027 доллара. Преимущество заведения составляет 2,7 процента[109]. Чем больше играешь, тем больше теряешь.
При использовании стратегии А, когда вы ставите разом все 20 долларов, вероятность удвоения ваших денег равна 18/37, то есть около 48 процентов, даже меньше равных шансов. Но, если вы играете по стратегии Б, вы платите по доллару за каждую ставку, а следовательно, эта стратегия постепенно уводит вас все дальше и дальше от цели – удвоения исходного капитала. Собственно говоря, в долгосрочной перспективе вероятность того, что эта стратегия позволит вам удвоить капитал, составляет всего 25 процентов.
Хотя стратегия А дает больше надежды, игра по ней означает, что вы проведете в казино лишь довольно короткое время. Вечер игры по стратегии Б может быть более интересным, но за это удовольствие вам придется заплатить.
Возможно, вы слышали, что игроку, желающему получить преимущество перед казино, место за столом для блэкджека. В 1960-х годах математик Эдвард Торп сообразил, что, наблюдая за картами, которые приходят дилеру и другим игрокам, в этой игре можно получить преимущество[110]. Эта методика называется подсчетом карт. В блэкджеке нужно добиться, чтобы ваши карты давали сумму, равную или меньшую 21, но большую, чем у дилера. Если вы перебираете – набираете больше 21, – вы проигрываете. Ключевой фактор, обеспечивающий эффективность подсчета карт, – это правило, согласно которому дилер всегда обязан брать очередную карту, если у него на руках 16 или меньше очков.
В колоде есть 16 карт, сто́ящих по 10 очков (десятки, валеты, дамы и короли). Если вы знаете, что в колоде еще остается много таких карт, значит, велика вероятность того, что дилер, взяв следующую карту, переберет; поэтому вам имеет смысл делать более крупные ставки. Подсчет карт – простой метод, позволяющий отслеживать, сколько старших карт уже было отыграно, а сколько еще остаются в колоде. Как правило, в казино используют на каждом столе не по одной, а по шесть-восемь колод, чтобы минимизировать действенность подсчета, но даже тогда он дает игроку преимущество. Фильм «Двадцать одно» (2008) был снят по мотивам подлинной истории группы математиков из MIT, использовавших шорткат Торпа в Лас-Вегасе. Занудные математики вышли в нем такими сексапильными и обаятельными, что этот фильм, вероятно, сделал для популярности математики среди абитуриентов университетов больше, чем совокупные усилия всех математических факультетов по всей стране.
На первый взгляд кажется, что это прекрасный шорткат к богатству. Проблема только в том, что, когда я проанализировал, сколько времени на самом деле нужно, чтобы заработать при помощи этой стратегии по-настоящему много денег, оказалось, что отношение выигрыша к затраченному времени получается меньше минимальной зарплаты. Похоже, к успеху игроков из MIT приложила руку госпожа Удача.
Плата за вход
Сколько вы согласились бы заплатить за участие в следующей игре? Я бросаю игральную кость и плачу вам столько долларов, сколько на ней выпадет очков. В одном случае из шести выпадает «шестерка», и вы получаете 6 долларов. Любое другое число тоже выпадает один раз из шести. За шесть бросков вы можете заработать 1 + 2 + 3 + 4 + 5 + 6 = 21 доллар. Значит, средний выигрыш за один бросок равен 21/6 = 3,50. Если вам предложат сыграть за меньшую плату, имеет смысл соглашаться, потому что в долгосрочной перспективе вы должны остаться в выигрыше. Каждый раз, когда играешь на деньги, разумно оценить, каким должен быть средний выигрыш, чтобы понять, стоит ли играть в эту игру.
Хотя к открытию того факта, что к азартным играм можно применять математические методы, привела переписка между Ферма и Паскалем, математическая теория вероятностей по-настоящему кристаллизовалась лишь с появлением работы швейцарского математика Якоба Бернулли «Искусство предположений» (Ars Conjectandi)[111]. Якоб принадлежал к тому самому клану Бернулли, который выступал на стороне Лейбница в споре об авторстве математического анализа. Именно в этой работе можно найти формулу целесообразной платы за участие в любой игре.
Предположим, существует N возможных исходов. В случае исхода 1 вы выигрываете W(1) долларов. Это происходит с вероятностью P(1). Аналогичным образом исход 2, вероятность которого P(2), приносит вам W(2) долларов. Каждый раз, когда вы играете в эту игру, вы выигрываете в среднем W(1) × P(1) + … + W(N) × P(N) долларов. Таким образом, если вам предлагают сыграть за меньшую сумму, в долгосрочной перспективе вы останетесь в выигрыше. Например, в моей игре с игральной костью есть шесть исходов, все вероятности P(1), … P(6) равны 1/6, а выигрыши W(1), … W(6) составляют от 1 до 6 долларов.

