- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
4. Кинетика. Теплота. Звук - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Предположим, что функция f(x, у) зависит от двух независимых переменных х и у. Под символом (дf/дх)умы понимаем самую обычную производную, получаемую общепринятым способом, если у постоянна:
Аналогично определяется и
Например, если f(x, у)=х2+ух, то (df/dx)y=2x+y, а (дfду)х=х. Мы можем распространить это на старшие производные:
д2f/дy2или д2f/дудх.
Последний случай означает, что сначала f продифференцировано по х, считая у постоянным, а затем результат продифференцирован по у, но теперь постоянным стало х. Порядок дифференцирования не имеет значения:
д2fldxdy=д2f/дyдx.
Нам придется подсчитывать изменение Df, происходящее с f(x, у), если х переходит в х+Dх, а у переходит в y+Dy. Будем предполагать, что Dx и Dy бесконечно малы:
Последнее уравнение и есть основное соотношение, связывающее приращение Df с Dx и Dy.
Посмотрим, как используется это соотношение; для этого вычислим изменение внутренней энергии U(Т,V), если температура Т переходит в Т+DT, а объем V переходит в V+DV. Используем формулу (45.1) и запишем
В предыдущей главе мы нашли другое выражение для изменения внутренней энергии DU; тогда к подводимому газу прибавлялось тепло DQ:
DU==DQ-РDV. (45.3)
Сравнив (45.2) и (45.3), можно было бы подумать, что P=(дU/дV)T, но это не так. Чтобы получить верный результат, сначала предположим, что газ получает тепло DQ, причем объем его не изменяется, так что DV=0. Если DV=0, то уравнение (45.3) говорит нам, что DU=DQ, а уравнение (45.2) утверждает, что DU=(дU/дT)VDT, поэтому (дU/дT)v=DQ/DT. Отношение DQ/DT—количество тепла, которое нужно подвести к телу, чтобы изменить его температуру на один градус, удерживая объем постоянным,— называется удельной теплоемкостью при постоянном объеме и обозначается символом CV, Таким образом, мы
показали, что
Теперь снова подведем к газу тепло DQ, но на этот раз договоримся, что температура газа останется постоянной, а объему мы позволим измениться на DV. В этом случае анализ сложнее, но мы можем вычислить DU, используя аргументы Карно, для чего нам придется снова призвать на помощь цикл Карно из предыдущей главы.
Диаграмма давление — объем для цикла Карно изображена на фиг. 45.1. Мы уже показали, что полная работа, совершаемая газом при обратимом цикле, равна DQ(DT/T), где DQ — тепло, подводимое к газу при температуре Т во время изотермического расширения от V до V+DV, а Т—DТ — это конечная температура, которой достигает газ при адиабатическом расширении на втором этапе цикла. Сейчас мы покажем, что эта работа равна, кроме того, заштрихованной площади на фиг. 45.1. Работа газа
во всех случаях жизни равна ∫PdV; она положительна, если
газ расширяется, и отрицательна, когда он сжимается. Если вычертить зависимость Р от V, то изменения Р и V изобразятся кривой, в каждой точке которой определенному значению Р соответствует определенное значение V. Работа, произведенная газом, пока его объем изменяется от одного значения до другого
(интеграл ∫PdV),— это площадь под кривой, соединяющей начальное и конечное значения V. Применим эту идею к циклу Карно и убедимся, что если обойти цикл, помня о знаке совершенной газом работы, то чистая работа газа будет равна заштрихованной на фиг. 45.1 площади.
Фиг. 45.1. Диаграмма Р — V для цикла Карно.
Кривые, помеченные Т и Т—DТ,— изотермы; крутые кривые между ними — адиабаты. Когда газ изотермически расширяется при температуре Т, он получает тепло DQ и увеличивает свой объем на DV; DР—изменение давления при постоянном объеме, температура в это время падает с Т до Т—DT.
А теперь вычислим эту площадь чисто геометрически. Цикл, который был использован для получения фиг. 45.1, отличается от цикла, описанного в предыдущей главе тем, что теперь DQ и DT бесконечно малы. Наши адиабаты и изотермы очень близки друг к другу, поэтому фигура, описанная жирными линиями на фиг. 45.1, приближается к параллелограмму, когда приращения DQ и DТ стремятся к нулю. Площадь этого параллелограмма в точности равна DVDP (где DV — изменение объема, когда к газу подводится энергия DQ при постоянной температуре, а DP — изменение давления при изменении температуры на DT и постоянном объеме). Легко показать, что заштрихованная площадь на фиг. 45.1 равна площади, ограниченной пунктиром на фиг. 45.2. А эту фигуру легко превратить в прямоугольник со сторонами DР и DV, для чего нужно лишь вырезать из нее треугольники и сложить их немного иначе.
Соберем все наши выводы вместе.
Выражение (45.5) содержит в себе суть результатов, следующих из аргументов Карно. Всю термодинамику можно вывести из (45.5) и первого закона, содержащегося в уравнении (45.3). Выражение (45.5)— это, в сущности, второй закон, хотя впервые Карно сформулировал его несколько иначе, поскольку не пользовался нашим определением температуры.
А теперь можно приступить к вычислению (дUlдV)T. Насколько изменится внутренняя энергия U, если объем изменится на DV? Во-первых, внутренняя энергия U меняется за счет подводимого тепла и, во-вторых, за счет совершаемой работы. Подводимое тепло, согласно (45.5), равно
DQ=(dP/дT)VDV,
а совершаемая над веществом работа равна —PDV. Поэтому изменение DU складывается из двух кусков
Поделив обе стороны на DV, мы найдем скорость изменения U относительно V при постоянной Т
В нашей термодинамике, где есть только две переменные, Т и V, и только две функции, Р и U, уравнения (45.3) и (45.7) — это основные уравнения, из которых можно вывести все последующие результаты.
§ 2. Применения
Теперь обсудим смысл уравнения (45.7) и посмотрим, почему оно дает ответ на поставленные в предыдущей главе вопросы. Мы занимались рассмотрением такой задачи: в кинетической теории ясно, что рост температуры приводит к увеличению давления, потому что усиливается бомбардировка поршня атомами. Те же физические причины приводят к тому, что при выталкивании поршня от газа отбирается тепло, и чтобы удержать температуру постоянной, надо позаботиться о подводе тепла. При расширении газ остывает, а при нагревании его давление возрастает. Между этими явлениями должна существовать какая-то связь, и она полностью определяется уравнением (45.7). Если мы удерживаем объем постоянным и поднимаем температуру, давление растет со скоростью (дР/дТ)V. Вот мы и нашли эту связь: если увеличить объем и не подвести какого-то количества тепла для поддержания температуры, то газ остынет, а величина (дU/дV)Tподскажет нам, сколько именно надо подбавить тепла. Уравнение (45.7) выражает фундаментальную связь между этими двумя эффектами. Именно это мы обещали найти, отправляясь на поиски законов термодинамики. Не зная внутреннего строения газа и лишь веря, что построить вечный двигатель второго рода выше наших сил, мы смогли вывести соотношение между количеством тепла, необходимого для поддержания постоянной температуры при расширении газа, и изменением давления газа при нагревании!
Получив от газа все, что нужно, рассмотрим другой случай— резину. Растянув резиновую полоску, мы обнаружили, что ее температура возросла, а нагревание заставило ее сжаться. Какое уравнение дает в случае резины тот же результат, что и уравнение (45.3) для газа? Сначала все идет, как и раньше: когда к резине подводится тепло DQ, внутренняя энергия изменяется на DU и производится какая-то работа. Только теперь эта работа равна —FDL вместо PDV, где F — это приложенная к резине сила, a L — длина резиновой полоски. Сила F зависит от температуры и длины резиновой полоски. Заменив в (45.3) PDV на —FDL, получим

