- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
4. Кинетика. Теплота. Звук - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Q1/T1=Q2/T2. (44.7)
Это и есть то соотношение, которое мы искали. Хотя оно доказано для машины с идеальным газом, мы уже знаем, что оно справедливо для любой обратимой машины.
А теперь посмотрим, как можно вывести этот универсальный закон на основании только логических аргументов, не интересуясь частными свойствами веществ. Предположим, что у нас есть три машины и три температуры Т1, Т2и Т3. Одна машина поглощает тепло Q1при температуре T1, производит работу W13и отдает тепло Q3при температуре T3(фиг. 44.8).
Фиг. 44.8. Спаренные машины 1 и 2 эквивалентны машине 3.
Другая машина работает при перепаде температур t2и Т3. Предположим, что эта машина устроена так, что она поглощает то же тепло Q3при температуре Т3и отдает тепло Q2. Тогда нам придется затратить работу W32, ведь мы заставили машину работать в обратном направлении. Цикл первой машины заключается в поглощении тепла Q1 и выделении тепла Q3при температуре Т3. Вторая машина в это время забирает из резервуара то же самое тепло Q3при температуре T3и отдает его в резервуар с температурой Т2. Таким образом, чистый результат цикла этих спаренных машин состоит в изъятии тепла Qlпри температуре Т1и выделении тепла Q2 при температуре T2. Эти машины эквивалентны третьей, которая поглощает тепло Qlпри температуре Т1, совершает работу W12и выделяет тепло Q2 при температуре Т2. Действительно, исходя из первого закона, можно сразу же показать, что W12=W13-W32:
W13-W32=(Q1-Q3)=(Q2-Q3)=Q1-Q2=W12 . (44.8)
Теперь можно получить закон, связывающий коэффициенты полезного действия машин. Ведь ясно, что между эффективностями машин, работающих при перепаде температур Т2-T3, t2-Т3и Т1-Т2, должны существовать определенные соотношения.
Сформулируем пояснее наши аргументы. Мы убедились, что всегда можем связать тепло, поглощенное при температуре T1 и тепло, выделенное при температуре T2, определив тепло, выделенное при какой-то другой температуре T3. Это значит, что мы можем описать все свойства машины, если введем стандартную температуру и будем анализировать все процессы с помощью именно такой стандартной температуры. Иначе говоря, если мы знаем коэффициент полезного действия машины, работающей между температурой Т и какой-то стандартной температурой, то сможем вычислить коэффициент полезного действия машины, работающей при любом перепаде температур. Ведь мы рассматриваем только обратимые машины, поэтому ничто не мешает нам спуститься от начальной температуры к стандартной, а потом снова вернуться к конечной температуре. Примем температуру в один градус за стандартную. Для обозначения выделяемого при стандартной температуре тепла используем особый символ Qs. Это значит, что если машина поглощает при температуре Т тепло Q, то при температуре в один градус она выделяет тепло QS. Если какая-то машина, поглощая тепло Q1 при T1, выделяет тепло QS при температуре в один градус, а другая машина, поглотив тепло Q2 при Т2, выделяет то же самое тепло QS при температуре в один градус, то машина, поглощающая Q1 при Т1 , должна при температуре Т2 выделять тепло Q2. Мы уже доказали это, рассмотрев три машины, работающие при трех температурах. Таким образом, для полного описания работы машин нам остается узнать совсем немного. Мы должны выяснить, сколько тепла Q1должна поглотить машина при температуре T1 , чтобы выделить при единичной температуре тепло QS. Конечно, между теплом Q и температурой Т существует зависимость. Легко понять, что тепло должно возрастать при возрастании температуры, ведь мы знаем, что если заставить работать машину в обратном направлении, то при более высокой температуре она отдает тепло. Легко также понять, что тепло Q1 должно быть пропорционально QS. Таким образом, наш великий закон выглядит примерно так: Каждому количеству тепла QS, выделенного при температуре в один градус, соответствует количество тепла, поглощенного машиной при температуре Т, равное QS, умноженному на некоторую возрастающую функцию Q температуры:
Q=QSf(T). (44.9)
§ 5. Термодинамическая температура
Пока мы не будем делать попыток выразить эту возрастающую функцию в терминах делений знакомого нам ртутного градусника, а взамен определим новую температурную шкалу. Когда-то «температура» определялась столь же произвольно. Мерой температуры служили метки, нанесенные на равных расстояниях на стенках трубочки, в которой при нагревании расширялась вода. Потом решили измерить температуру ртутным термометром и обнаружили, что градусные расстояния уже не одинаковы. Сейчас мы можем дать определение температуры, не зависящее от каких-либо частных свойств вещества. Для этого мы используем функцию f(T), которая не зависит ни от одного устройства, потому что эффективность обратимых машин не зависит от их рабочего вещества. Поскольку найденная нами функция возрастает с температурой, то мы можем считать, что она сама по себе измеряет температуру, начиная со стандартной температуры в один градус. Для этого надо только договориться, что
Q=QST, (44.10)
а
QS=S·1°. (44.11)
Это означает, что теперь мы можем найти температуру тела, определив количество тепла, которое поглощается обратимой машиной, работающей в интервале между температурой тела и температурой в один градус (фиг. 44.9)
Фиг. 44.9. Абсолютная термодинамическая температура.
Если машина забирает из котла в семь раз больше тепла, нежели поступает в одноградусный конденсор, то температура котла равна семи градусам и т. д. Таким образом, измеряя количество тепла, поглощаемого при разных температурах, мы определяем температуру. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств вещества. Теперь мы будем пользоваться исключительно этим определением температуры.
Теперь нам ясно, что если у нас имеются две машины, из коих одна работает при перепаде температур Т1и один градус, а другая — T2 и один градус, и обе они выделяют при единичной температуре одинаковое количество тепла, то поглощаемое ими тепло должно удовлетворять соотношению
Q1/T1=S=Q2/T2. (44.12)
Но это означает, что если какая-нибудь обратимая машина поглощает тепло q1при температуре Т1, а выделяет тепло Q2 при температуре Т2, то отношение Q1к T1 равно отношению Q2 к T2. Это справедливо для любой обратимой машины. Все, что будет дальше, содержится в этом соотношении: это центр термодинамической науки.

