- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
4. Кинетика. Теплота. Звук - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Фиг. 44.7. Машина В заставляет работать обратимую машину А в обратном направлении.
Обладая работой W, можно запустить машину А в обратном направлении, ведь это — обратимая машина. При этом она поглотит какое-то количество тепла из резервуара с температурой Т2, но зато вернет тепло Q1резервуару при температуре Т1. Каков чистый результат этого двойного цикла? Мы вернули все к исходному состоянию и совершили дополнительную работу W'-W. Дело свелось к тому, что мы извлекли энергию из резервуара с температурой Т2! Тепло Q1, взятое из резервуара с температурой T1 , было аккуратно возвращено. Раз это тепло все равно возвращается, то в качестве резервуара с температурой Т1можно взять что-нибудь поменьше океана и заключить это устройство внутрь составной машины А+В. Чистым результатом цикла такой машины будет изъятие из резервуара при температуре Т2тепла W'-W и превращение его в работу. Но извлечение полезной работы из резервуара при неизменной температуре без других изменений запрещается постулатом Карно. Этого нельзя сделать. Таким образом, не существует таких машин, которые извлекли бы некоторое количество тепла из резервуара при температуре Т1, возвратили бы какую-то его часть при температуре Т2и совершили большую работу, чем обратимая машина, работающая при тех же самых температурных условиях.
Предположим теперь, что машина В тоже обратима. Тогда, конечно, не только W' не больше W, но и W не больше W'. Чтобы доказать это, надо просто обратить предыдущие аргументы. Итак, если обе машины обратимы, то они должны производить одинаковую работу, и мы пришли к блестящему выводу Карно: если машина обратима, то безразлично, как она умудряется превращать тепло в работу. Произведенная машиной работа, если только машина поглощает определенное количество тепла при температуре Т1и возвращает какую-то его часть при температуре Т2, не зависит от устройства машины. Так уж устроен мир, и от частных свойств машины это не зависит.
Если бы мы нашли закон, определяющий работу, совершаемую при изъятии тепла Q1при температуре Т1и возвращении части этого тепла при температуре T2, то эта величина была бы универсальной постоянной, не зависящей от свойств вещества. Конечно, если нам известны свойства какого-нибудь вещества, мы можем вычислить интересующую нас величину. После этого мы будем вправе заявить, что все остальные вещества, если с их помощью построить обратимую машину, произведут точно такую же работу. Такова основная идея, ключ, с помощью которого мы можем найти последующие соотношения. Например, мы хотим узнать, насколько резина сжимается при нагревании и насколько она остывает, когда мы позволяем ей сжаться. Предположим, что мы взяли резину в качестве рабочего вещества обратимой машины и совершили обратимый цикл. Чистый результат, полная произведенная работа,— это универсальная функция, великая функция, не зависящая от свойств вещества. Таким образом, мы убеждаемся, что есть нечто, ограничивающее в известном роде разнообразие свойств вещества. Мы не можем сделать эти свойства какими захотим, не можем изобрести вещество, которое, будучи использованным в тепловой машине, произвело бы за обратимый цикл работу больше допустимой. Этот принцип, это ограничение,— единственное реальное правило, которое можно вывести из термодинамики.
§ 4. Коэффициент полезного действия идеальной машины
А сейчас попробуем найти закон, определяющий работу W как функцию Q1, Т1и Т2. Ясно, что W пропорционально Q1, ибо если две обратимые машины работают в параллель, то такая сдвоенная машина тоже будет обратимой машиной. Если каждая из этих машин поглощает тепло Q1, то обе сразу поглощают 2Q1, а работа, которую они совершают, равна 2 W и т. д. Поэтому пропорциональность W затраченному теплу Q1 вполне естественна.
После этого сделаем еще один важный шаг к универсальному закону. В качестве рабочего вещества машины можно взять одно вещество с хорошо известными нам свойствами. Воспользуемся этим и выберем идеальный газ. Можно и не делать этого, а вывести интересующее нас правило чисто логически, совсем не используя для этого какого-то вещества. Это одно из самых блестящих теоретических доказательств в физике, но пока мы используем менее абстрактный и более простой метод прямого вычисления.
Нам нужно лишь получить формулы для Q1и Q2 (ведь W=Q1-Q2) — тепла, которым машина обменивается с резервуарами во время изотермического расширения и сжатия. Для примера вычислим Q1— тепло, полученное от резервуара при температуре T1 во время изотермического расширения (кривая 1 на фиг. 44.6) от точки а, где давление равно pa, объем Va, температура Т1, до точки b, где давление равно рb, объем Vb, а температура та же самая T1. Энергия каждой молекулы идеального газа зависит только от температуры, а поскольку в точках а и b одинаковы и температура, и число молекул, то и внутренняя энергия тоже одинакова. Энергия U не изменяется; полная работа газа в период расширения
W=ab∫pdV
а
совершается за счет энергии Q1 , полученной из резервуара. Во время расширения pV=NkT1или
p-NkT1/V; значит,
т. е.
Q1=NkT1ln(Vb/Va).
Вот то тепло, которое взято из резервуара при температуре Т1. Точно так же можно вычислить и тепло, отданное при сжатии (кривая 3 на фиг. 44.6) резервуару при температуре T2:
Q2=NkT2ln(Vc/Vd). (44.5)
Чтобы закончить анализ, нужно еще найти соотношение между Vc/Vdи Vb/Va. Для этого взглянем сначала на кривую 2, которая описывает адиабатическое расширение от b до c. В это время pVgостается постоянным. Поскольку pV=NkT, то формулу для адиабатического расширения в конечных точках пути можно записать в виде (pV)Vg-1=const, или TVg-1=const, т. е.
T1Vbg-1=T2Vcg-1. (44.6)
Так как кривая 4 описывает адиабатическое сжатие от d до а, то
Т1Vag-1=T2Vdg-1. (44.6а)
Если поделить эти равенства одно на другое, то мы выясним, что отношения Vb/Vaи Vc/Vdравны, поэтому равны и логарифмы в (44.4) и (44.5). Значит,
Q1/T1=Q2/T2. (44.7)
Это и есть то соотношение, которое мы искали. Хотя оно доказано для машины с идеальным газом, мы уже знаем, что оно справедливо для любой обратимой машины.
А теперь посмотрим, как можно вывести этот универсальный закон на основании только логических аргументов, не интересуясь частными свойствами веществ. Предположим, что у нас есть три машины и три температуры Т1, Т2и Т3. Одна машина поглощает тепло Q1при температуре T1, производит работу W13и отдает тепло Q3при температуре T3(фиг. 44.8).

