Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Физика » 7. Физика сплошных сред - Ричард Фейнман

7. Физика сплошных сред - Ричард Фейнман

Читать онлайн 7. Физика сплошных сред - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 29 30 31 32 33 34 35 36 37 ... 62
Перейти на страницу:

Рассмотрим маленький прямо­угольный кубик внутри намаг­ниченного материала (фиг. 36.4).

Фиг. 36.4. Небольшой намагничен­ный кубик эквивалентен циркули­рующему поверхностному току.

Пусть кубик будет так мал, что намагниченность внутри него можно считать однородной. Если компонента намагниченности этого кубика в направлении оси z равна Мz, то полный эффект будет таким, как будто по вертикальным граням течет поверх­ностный ток. Величину этого тока мы можем найти из ра­венства (36.9). Полный магнитный момент кубика равен про­изведению намагниченности на объем:

m=Mz(abc),

откуда, вспоминая, что площадь равна ас, получаем

I=Мzb.

Другими словами, на каждой из вертикальных поверхностей величина тока на единицу длины по вертикали равна Мz.

Представьте теперь два таких маленьких кубика, располо­женных рядом друг с другом (фиг. 36.5).

Фиг. 36.5. Если на­магниченность двух соседних кубиков раз­лична, то на их гра­нице течет поверх­ностный ток.

Кубик 2 несколько смещен по отношению к кубику 1, поэтому его вертикальная компонента намагниченности будет немного другой, скажем Mz+DМz. Теперь полный ток на поверхности между этими двумя кубиками будет слагаться из двух частей. По кубику 1 в положительном направлении по оси у течет ток I1, а по кубику 2 в отрицательном направлении течет ток I2. Полный поверхностный ток в положительном направлении оси у будет равен сумме

I=I1-I2=Мzb-(Мz+DМz)b=-DMzb.

Величину DМгможно записать в виде произведения произ­водной от Mzпо х на смещение кубика 2 относительно кубика 1, которое как раз равно а:

DMz=(дMz /дx)а. Тогда ток, текущий между двумя кубиками, будет равен

I=(-дMz/дx)ab.

Чтобы связать ток I со средней объемной плотностью тока j, необходимо понять, что этот ток на самом деле размазан по некоторой области поперечного сечения. Если мы вообразим, что такими маленькими кубиками заполнен весь объем мате­риала, то за такое сечение (перпендикулярное оси х) может быть выбрана боковая грань одного из кубиков. Теперь вы видите, что площадь, связанная с током, как раз равна площади ab одной из фронтальных граней. В результате получаем

Наконец-то у нас начинает получаться ротор М.

Но в выражении для jyдолжно быть еще одно слагаемое, связанное с изменением x-компоненты намагниченности с изме­нением z. Этот вклад в j происходит от поверхности между двумя маленькими кубиками, поставленными друг на друга (фиг. 36.6).

Фиг. 36.6. Два кубика, распо­ложенных один над другим, то­же могут давать вклад в jy.

Воспользовавшись только что проведенными рассуждениями, мы можем показать, что эта поверхность будет давать в величину jy вклад, равный dMx/dz. Только эти поверх­ности и будут давать вклад в y-компоненту тока, так что пол­ная плотность тока в направлении оси у получается равной

Определяя токи на остальных гранях куба или используя тот факт, что направление оси z было выбрано совершенно произ­вольно, мы можем прийти к заключению, что вектор плотности тока действительно определяется выражением .

j=СXM.

Итак, если вы решили описывать магнитное состояние ве­щества через средний магнитный момент единицы объема М, то оказывается, что циркулирующие атомные токи эквивалент­ны средней плотности тока в веществе, определяемой выраже­нием (36.7). Если же материал обладает вдобавок еще диэлект­рическими свойствами, то в нем может возникнуть и поляри­зационный ток jпол=dP/dt. А если материал к тому же и про­водник, то в нем может течь и ток проводимости jпров. Таким образом, полный ток можно записать как

J = Jпрoв+СXM+дP/дt; (36.10)

§ 2. Поле Н

Теперь можно подставить выражение для тока (36.10) в уравнение Максвелла. Мы получаем

Слагаемое с М можно перенести в левую часть:

Как мы уже отмечали в гл. 32, иногда удобно записывать (Е+Р/e0) как новое векторное поле D/e0. Точно так же удобно (В-М/e0с2) записывать в виде единого векторного поля. Такое поле мы обозначим через Н, т. е.

H=В-M/(e0c2). (36.12)

После этого уравнение (36.11) принимает вид

e0c2СXH=jnpов+дD/дt. (36.13)

Выглядит оно просто, но вся его сложность теперь скрыта в буквах D и Н.

Хочу предостеречь вас. Большинство людей, которые при­меняют систему СИ, пользуются другим определением Н. На­зывая свое поле через Н' (они, конечно, не пишут штриха), они определяют его как

Н'=e0с2В-М. (36.14)

(Кроме того, величину e0с2 они обычно записывают в виде l/m0, так что появляется еще одна постоянная, за которой все время нужно следить!) При таком определении уравнение (36.13) будет выглядеть еще проще:

СXH' = jnpoв+дD/дt. (36.15)

Но трудность здесь заключается в том, что такое определение, во-первых, не согласуется с определением, принятым теми, кто не пользуется системой СИ, и, во-вторых, поля Н' и В изме­ряются в различных единицах. Я думаю, что Н удобнее изме­рять в тех же единицах, что и В, а не в единицах М, как Н'. Но если вы собираетесь стать инженером и проектировать транс­форматоры, магниты и т. п., то будьте внимательны. Вы столк­нетесь со множеством книг, где в качестве определения Н используется уравнение (36.14), а не (36.12), а в других книгах, особенно в справочниках о магнитных материалах, связь между В и Н такая же, как и у нас. Нужно быть внимательным и по­нимать, какое где использовано соглашение.

Одна из примет, указывающих нам на соглашение,— это единицы измерения. Напомним, что в системе СИ величина В, а следовательно, и наше Н измеряются в единицах вб/м2 (1 вб/м2=10 000 гс). Магнитный же момент (т. е. произведение тока на площадь) в той же системе СИ измеряется в единицах а·м2. Тогда намагниченность М имеет размерность а/м. Размерность Н' та же, что и размерность М. Нетрудно видеть, что это согла­суется с уравнением (36.15), поскольку у имеет размерность обратной длины.

Те, кто работает с электромагнитами, привыкли измерять поле Н (определенное как Н') в ампер-витках/метр, имея при этом в виду витки провода в обмотке. Но «виток» ведь фактически величина безразмерная, и она не должна вас смущать. Посколь­ку наше Н равно H'/e0c2, то, если вы пользуетесь системой СИ, Нвб/м) равно произведению 4p·10-7 на Н'(в а/м). Может быть, более удобно помнить, что Нгс) равно 0,0126 H'а/м).

Здесь есть еще одна ужасная вещь. Многие люди, исполь­зующие наше определение Н, решили назвать единицы измере­ния Н и В по-разному! И даже несмотря на одинаковую размер­ность, они называют единицу В гауссом, а единицу Нэрсте­дом (конечно, в честь Гаусса и Эрстеда). Таким образом, во многих книгах вы найдете графики зависимости В в гауссах от Н в эрстедах. На самом деле это одна и та же единица, равная 10-4 единиц СИ. Эту неразбериху в магнитных единицах мы увековечили в табл. 36.1.

Таблица 36.1 · ЕДИНИЦЫ МАГНИТНЫХ ВЕЛИЧИН

§ 3. Кривая намагничивания

Рассмотрим теперь некоторые простые случаи, когда маг­нитное поле остается постоянным или изменения поля настолько медленны, что можно пренебречь dD/dt по сравнению с jnpoв. В этом случае поля подчиняются уравнениям

1 ... 29 30 31 32 33 34 35 36 37 ... 62
Перейти на страницу:
На этой странице вы можете бесплатно скачать 7. Физика сплошных сред - Ричард Фейнман торрент бесплатно.
Комментарии